zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Almost periodic solution for a Volterra model with mutual interference and Beddington-DeAngelis functional response. (English) Zbl 1175.34058
The authors consider a Volterra model with mutual interference and Beddington-DeAngelis functional response. By applying the comparison theorem for differential equations and constructing a suitable Lyapunov functional, sufficient conditions for permanence and existence of a unique globally attractive positive almost periodic solution are obtained. A suitable example together with its numeric simulations is given to illustrate the feasibility of the main results.

MSC:
34C27Almost and pseudo-almost periodic solutions of ODE
34D05Asymptotic stability of ODE
92D25Population dynamics (general)
References:
[1]Wang, K.; Zhu, Y.: Global attractivity of positive periodic solution for a Volterra model, Appl. math. Comput. 203, No. 2, 493-501 (2008) · Zbl 1178.34052 · doi:10.1016/j.amc.2008.04.005
[2]Berryman, A. A.: The origins and evolution of predator – prey theory, Ecology 75, 1530-1535 (1992)
[3]Chen, F. D.: Periodicity in a nonlinear predator – prey system with state dependent delays, Acta math. Appl. sinica engl. Ser. 21, No. 1, 1-10 (2005) · Zbl 1096.34050 · doi:10.1007/s10255-005-0214-2
[4]Shen, C. X.: Permanence and global attractivity of the food-chin system with Holling IV type functional response, Appl. math. Comput. 194, No. 1, 179-185 (2007) · Zbl 1193.34142 · doi:10.1016/j.amc.2007.04.019
[5]Zhang, L.; Teng, Z. D.: Permanence for a delayed periodic predator – prey model with prey dispersal in multi-patches and predator density-independent, J. math. Anal. appl. 338, No. 1, 175-193 (2008) · Zbl 1147.34056 · doi:10.1016/j.jmaa.2007.05.016
[6]Chen, F.; Cao, X. H.: Existence of almost periodic solution in a ratio-dependent Leslie system with feedback controls, J. math. Anal. appl. 341, 1399-1412 (2008) · Zbl 1145.34026 · doi:10.1016/j.jmaa.2007.09.075
[7]Song, X. Y.; Li, Y. F.: Dynamic behaviors of the periodic predator – prey model with modified Leslie – gower Holling-type II schemes and impulsive effect, Nonlinear anal. Real world appl. 9, No. 1, 64-79 (2008) · Zbl 1142.34031 · doi:10.1016/j.nonrwa.2006.09.004
[8]Zhou, X. Y.; Shi, X. Y.; Song, X. Y.: Analysis of nonautonomous predator – prey model with nonlinear diffusion and time delay, Appl. math. Comput. 196, 129-136 (2008) · Zbl 1147.34355 · doi:10.1016/j.amc.2007.05.041
[9]Meng, X. Z.; Xu, W. J.; Chen, L. S.: Profitless delays for a nonautonomous Lotka – Volterra predator – prey almost periodic system with dispersion, Appl. math. Comput. 188, No. 1, 365-378 (2007) · Zbl 1113.92070 · doi:10.1016/j.amc.2006.09.133
[10]Liu, S. Q.; Zhang, J. H.: Coexistence and stability of predator – prey model with beddington – deangelis functional response and stage structure, J. math. Anal. appl. 342, No. 1, 446-460 (2008) · Zbl 1146.34057 · doi:10.1016/j.jmaa.2007.12.038
[11]Ding, X. Q.; Jiang, J. F.: Multiple periodic solutions in delayed gause-type ratio-dependent predator – prey systems with non-monotonic numerical responses, Math. comput. Modell. 47, No. 11, 1323-1331 (2008) · Zbl 1145.34332 · doi:10.1016/j.mcm.2007.06.025
[12]Hassel, M. P.: Density dependence in single-species population, J. anim. Ecol. 44, 283-295 (1975)
[13]Chen, L. S.: Mathematics ecology models and research methods, (1988)
[14]Fan, M.; Kuang, Y.: Dynamics of a nonautonomous predator – prey system with the beddington – deangelis functional response, J. math. Anal. appl. 259, 15-39 (2004) · Zbl 1051.34033 · doi:10.1016/j.jmaa.2004.02.038
[15]Arditi, R.; Ginzburg, L. R.: Coupling in predator – prey dynamics: ratio-dependence, J. theoret. Biol. 139, 1287-1296 (1989)
[16]Arditi, R.; Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology 73, 1544-1551 (1992)
[17]Gutierrez, A. P.: The physiological basis of ratio-dependent predator – prey theory: a metabolic pool model of nicholsons blowflies as an example, Ecology 73, 1552-1563 (1992)
[18]Zhou, Z. H.; Yang, Z. H.: Periodic solutions in higher-dimensional Lotka – Volterra neutral competition systems with state-dependent delays, Appl. math. Comput. 189, No. 1, 986-995 (2007) · Zbl 1134.34046 · doi:10.1016/j.amc.2006.11.174
[19]Han, F.; Wang, Q. Y.: Existence of multiple positive periodic solutions for differential equation with state-dependent delays, J. math. Anal. appl. 324, No. 2, 908-920 (2006) · Zbl 1112.34049 · doi:10.1016/j.jmaa.2005.12.050
[20]Chen, F. D.: Almost periodic solution of the non-autonomous two-species competitive model with stage structure, Appl. math. Comput. 181, 685-693 (2006) · Zbl 1163.34030 · doi:10.1016/j.amc.2006.01.055
[21]Shi, C. L.; Li, Z.; Chen, F. D.: The permanence and extinction of a nonlinear growth rate single-species non-autonomous dispersal models with time delays, Nonlinear anal. Real world appl. 8, No. 5, 536-1550 (2007) · Zbl 1128.92053 · doi:10.1016/j.nonrwa.2006.08.005
[22]Feng, C. H.; Liu, Y. J.: Almost periodic solutions for delay Lotka – Volterra competitive systems, Acta math. Appl. sinica 28, No. 3, 459-465 (2005)
[23]Feng, C. H.; Wang, P. G.: The existence of almost periodic solutions of some delay differential equations, Comput. math. Appl. 47, No. 8, 1225-1231 (2004) · Zbl 1080.34561 · doi:10.1016/S0898-1221(04)90116-2
[24]Yang, X. T.; Yuan, R.: Global attractivity and positive almost periodic solution for delay logistic differential equation, Nonlinear anal. 68, No. 1, 54-72 (2008) · Zbl 1136.34057 · doi:10.1016/j.na.2006.10.031
[25]Yang, X. T.: Global attractivity and positive almost periodic solution of a single species population model, J. math. Anal. appl. 336, No. 1, 111-126 (2007) · Zbl 1132.34050 · doi:10.1016/j.jmaa.2007.02.045
[26]Liu, S. Q.; Chen, L. S.: Permanence, extinction and balancing survival in nonautonomous system with delays, Appl. math. Comput. 129, 481-499 (2002) · Zbl 1035.34088 · doi:10.1016/S0096-3003(01)00058-3
[27]He, C. Y.: Almost periodic differential equations, (1992)
[28]A.M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, vol. 377, Springer-Verlag, Berlin, 1974. · Zbl 0325.34039
[29]Wang, Q.; Dai, B. X.: Almost periodic solution for n-species Lotka – Volterra competitive system with delay and feedback controls, Appl. math. Comput. 200, No. 1, 133-146 (2008) · Zbl 1146.93021 · doi:10.1016/j.amc.2007.10.055