zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. (English) Zbl 1175.37084

Motivation for the investigations of fractional order dynamical systems is explained by rich applications in mathematical biology [A. M. Nakhushev, Equations of mathematical biology. Moskva: Vysshaya Shkola (1995; Zbl 0991.35500)]. Therefore it is essential to study bifurcation, stability and chaos in fractional order dynamical systems. Since persistence and seasonability are important concepts in biology, it is relevant to study the persistence in biologically motivated nonautonomous fractional equations.

In this article after some relations between complex adaptive systems and fractional mathematics sufficient conditions for the persistence of some biologically inspired fractional nonautonomous equations are derived. Then Poincaré-Andronov-Hopf bifurcation in fractional order systems is studied. Also the local stability questions in functional equations are considered.

37N25Dynamical systems in biology
92B99Mathematical biology
37J40Perturbations, normal forms, small divisors, KAM theory, Arnol’d diffusion
[1]Ahmed, E., El-Sayed, A.M.A., El-Mesiry, E.M., El-Saka, H.A.A.: Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. 16(7), 1–9 (2005) · Zbl 1105.82026 · doi:10.1142/S0129183105006905
[2]Ahmed, E., El-Sayed, A., El-Saka, H.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. A 358, 1 (2006) · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[3]Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. A 358, 1 (2006) · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[4]Ahmed, E., El-Sayed, A., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007) · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[5]Diethelm, K.: Predictor–corrector strategies for single- and multi-term fractional differential equations. In: Lipitakis, E.A. (ed.) Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and its Applications, pp. 117–122. LEA Press, Athens (2002) [Zbl. Math. 1028.65081]
[6]Diethelm, K., Ford, N.J.: The numerical solution of linear and non-linear Fractional differential equations involving Fractional derivatives several of several orders. Numerical Analysis Report 379, Manchester Center for Numerical Computational Mathematics
[7]Diethelm, K., Freed, A.: On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II–Computational Fluid Dynamics, Reaction Engineering, and Molecular properties, pp. 217–224. Springer, Heidelberg (1999)
[8]Diethelm, K., Freed, A.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. In: Heinzel, S., Plesser, T. (eds.) Forschung und wissenschaftliches Rechnen 1998. Gesellschaft für Wisseschaftliche Datenverarbeitung, pp. 57–71. Vandenhoeck & Ruprecht, Göttingen (1999)
[9]Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[10]Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[11]Edelstein-Keshet, L.: Introduction to Mathematical Biology. Siam Classics in Appl. Math. SIAM, Philadelphia (2004)
[12]El-Mesiry, E.M., El-Sayed, A.M.A., El-Saka, H.A.A.: Numerical methods for multi-term fractional (arbitrary) orders differential equations. Appl. Math. Comput. 160(3), 683–699 (2005)
[13]El-Sayed, A.M.A., El-Mesiry, E.M., El-Saka, H.A.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 23(1), 33–54 (2004) · Zbl 1213.34025 · doi:10.1590/S0101-82052004000100002
[14]El-Sayed, A., El-Mesiry, A., EL-Saka, H.: On the fractional-order logistic equation. Appl. Math. Lett. 20, 817–823 (2007) · Zbl 1140.34302 · doi:10.1016/j.aml.2006.08.013
[15]Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge (1998)
[16]Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Eng. in Sys. Appl., vol. 2, p. 963. Lille, France (1996)
[17]Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomena. Physica A 265, 535 (1999) · doi:10.1016/S0378-4371(98)00550-0
[18]Smith, J.B.: A technical report of complex system. ArXiv:CS0303020 (2003)
[19]Stanislavsky, A.A.: Memory effects and macroscopic manifestation of randomness. Phys. Rev. E 61, 4752 (2000) · doi:10.1103/PhysRevE.61.4752
[21]Zhao, J., Jiang, J.: Average conditions for permanence and extinction in non-autonomous Lotka-Volterra system. J. Math. Anal. Appl. 299, 663 (2004) · Zbl 1066.34050 · doi:10.1016/j.jmaa.2004.06.019