zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations. (English) Zbl 1175.65124
Summary: We use the sine-cosine and the tanh methods for solving the Rosenau-Korteweg-de Vries (KdV) and Rosenau-Kawahara equations. The two methods reveal solitons and periodic solutions. The study confirms the power of the two schemes.
MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
References:
[1]Rosenau, P.: A quasi-continuous description of a nonlinear transmission line, Phys. scripta 34, 827-829 (1986)
[2]Rosenau, P.: Dynamics of dense discrete systems, Progr. theor. Phys. 79, 1028-1042 (1988)
[3]Park, M. A.: On the rosenau equation, Math. appl. Comput. 9, 145-152 (1990) · Zbl 0723.35071
[4]Malfliet, W.: Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60, No. 7, 650-654 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[5]Malfliet, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. scripta 54, 563-568 (1996) · Zbl 0942.35034 · doi:10.1088/0031-8949/54/6/003
[6]Malfliet, W.: The tanh method: II. Perturbation technique for conservative systems, Phys. scripta 54, 569-575 (1996) · Zbl 0942.35035 · doi:10.1088/0031-8949/54/6/004
[7]Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations, Appl. math. Comput. 154, No. 3, 713-723 (2004) · Zbl 1054.65106 · doi:10.1016/S0096-3003(03)00745-8
[8]Wazwaz, A. M.: Solitons and periodic solutions for the fifth-order KdV equation, Appl. math. Lett. 19, 162-1167 (2006) · Zbl 1179.35296 · doi:10.1016/j.aml.2005.07.014
[9]Wazwaz, A. M.: Distinct variants of the KdV equation with compact and noncompact structures, Appl. math. Comput. 150, 365-377 (2004) · Zbl 1039.35110 · doi:10.1016/S0096-3003(03)00238-8
[10]Wazwaz, A. M.: Variants of the generalized KdV equation with compact and noncompact structures, Comput. math. Appl. 47, 583-591 (2004) · Zbl 1062.35120 · doi:10.1016/S0898-1221(04)90047-8
[11]Wazwaz, A. M.; Helal, A. M.: Nonlinear variants of the BBM equation with compact and noncompact physical structures, Chaos soliton fract. 26, No. 3, 767-776 (2005) · Zbl 1078.35110 · doi:10.1016/j.chaos.2005.01.044
[12]Al-Mdallal, Q. M.; Syam, M. I.: Sine – cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation, Chaos soliton fract. 33, 1610-1617 (2007) · Zbl 1151.35418 · doi:10.1016/j.chaos.2006.03.039