[1] | Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transp Res B 13:19–32 · doi:10.1016/0191-2615(79)90004-3 |

[2] | Boyce DE (1984) Urban transportation network equilibrium and design models: recent achievements and future prospectives. Environ Plan A 16:1445–1474 · doi:10.1068/a161445 |

[3] | Chiou SW (1999) Optimization of area traffic control for equilibrium network flows. Transp Sci 33:279–289 · Zbl 1004.90014 · doi:10.1287/trsc.33.3.279 |

[4] | Cho HJ (1988) Sensitivity analysis of equilibrium network flows and its application to the development of solution methods for equilibrium network design problems. PhD dissertation. University of Pennsylvania, Philadelphia |

[5] | Cree ND, Maher MJ (1998) The continuous equilibrium optimal network design problem: a genetic approach. In: Transportation networks: recent methodological advances. Elsevier, Netherlands, pp 163–174 |

[6] | Dafermos S (1980) Traffic equilibria and variational inequalities. Transp Sci 14:42–54 · doi:10.1287/trsc.14.1.42 |

[7] | Dafermos S, Nagurney A (1984) Sensitivity analysis for the asymmetric network equilibrium problem. Math Program 28:174–184 · Zbl 0535.90038 · doi:10.1007/BF02612357 |

[8] | Friesz TL (1981) An equivalent optimization problem with combined multiclass distribution assignment and modal split which obviates symmetry restriction. Transp Res B 15:361–369 · doi:10.1016/0191-2615(81)90020-5 |

[9] | Friesz TL (1985) Transportation network equilibrium, design and aggregation: key developments and research opportunities. Transp Res A 19:413–427 · doi:10.1016/0191-2607(85)90041-X |

[10] | Friesz TL, Harker PT (1985) Properties of the iterative optimization equilibrium algorithm. Civ Eng Syst 2:142–154 · doi:10.1080/02630258508970398 |

[11] | Friesz TL et al (1990) Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints. Math Program 48:265–284 |

[12] | Friesz TL et al (1993) The multiobjective equilibrium network design problem revisited: a simulated annealing approach. Eur J Oper Res 65:44–57 · Zbl 0772.90043 · doi:10.1016/0377-2217(93)90143-B |

[13] | Gao ZY, Song YF (2002) A reserve capacity model of optimal signal control with user-equilibrium route choice. Transp Res B 36:313–323 · doi:10.1016/S0191-2615(01)00005-4 |

[14] | Gao ZY, Song YF Si BF (2000) Urban transportation continuous equilibrium network design problem: theory and method. China Railway Press, Beijing |

[15] | Gao ZY, Wu JJ, Sun HJ (2005) Solution algorithm for the bi-level discrete network design problem. Transport Res B 39:479–495 · doi:10.1016/j.trb.2004.06.004 |

[16] | Kim TJ (1990) Advanced transport and spatial systems models: applications to Korea. Springer, New York |

[17] | Kim TJ, Suh S (1988) Toward developing a national transportation planning model: a bilevel programming approach for Korea. Ann Reg Sci XXSPED:65–80 · doi:10.1007/BF01952844 |

[18] | Luo ZQ, Pang JS, Ralph D (1996) Mathematical programs with equilibrium constraints. Cambridge University Press, Cambridge |

[19] | Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18:1–55 · doi:10.1287/trsc.18.1.1 |

[20] | Mangasarian OL, Rosen JB (1964) Inequalities for stochastic nonlinear programming problems. Oper Res 12:143–154 · Zbl 0132.13806 · doi:10.1287/opre.12.1.143 |

[21] | Marcotte P (1983) Network optimization with continuous control parameters. Transp Sci 17:181–197 · doi:10.1287/trsc.17.2.181 |

[22] | Marcotte P (1986) Network design problem with congestion effects: a case of bi-level programming. Math Program 34:142–162 · Zbl 0604.90053 · doi:10.1007/BF01580580 |

[23] | Marcotte P, Marquis G (1992) Efficient implementation of heuristics for the continuous network design problem. Ann Oper Res 34:163–176 · Zbl 0756.90037 · doi:10.1007/BF02098178 |

[24] | Marcotte P, Zhu DL (1996) Exact and inexact penalty methods for the generalized bilevel programming problems. Math Program 74:141–157 |

[25] | Meng Q, Yang H, Bell MGH (2001) An equivalent continuously differentiable model and a locally convergent algorithm for the continuous networks design problem. Transp Res B 35:83–105 · doi:10.1016/S0191-2615(00)00016-3 |

[26] | Patriksson M (1994) The traffic assignment problem models and methods. VSB BV, Netherlands |

[27] | Powell WB, Sheffi Y (1982) The convergence of equilibrium algorithms with predetermined step size. Transp Sci 6:5–55 |

[28] | Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton |

[29] | Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice–Hall, Englewood Cliffs |

[30] | Shimizu K, Ishizuka Y, Bard JF (1997) Nondifferentiable and two-level mathematical programming. Kluwer Academic, Massachusetts |

[31] | Suwansirikul C, Friesz TL, Tobin RL (1987) Equilibrium decomposed optimization: a heuristic for the continuous equilibrium network design problem. Transp Sci 21:254–263 · Zbl 0638.90097 · doi:10.1287/trsc.21.4.254 |

[32] | Tan HN, Gershwin SB, Athans M (1979) Hybrid optimization in urban traffic networks. Report No. DOT-TSC-RSPA-79-7. Laboratory for Information and Decision System, MIT, Cambridge, MA |

[33] | Tobin RL, Friesz TL (1988) Sensitivity analysis for equilibrium network flows. Transp Sci 22:242–250 · Zbl 0665.90031 · doi:10.1287/trsc.22.4.242 |

[34] | Wong SC, Yang H (1997) Reserve capacity of a signal-controlled road network. Transp Res Part B 31:397–402 · doi:10.1016/S0191-2615(97)00002-7 |

[35] | Yang H (1995) Sensitivity analysis for queuing equilibrium network flow and its application to traffic control. Math Comput Model 22:247–258 |

[36] | Yang H (1997) Sensitivity analysis for the elastic demand network equilibrium problem with applications. Transp Res B 31:55–70 · doi:10.1016/S0191-2615(96)00015-X |

[37] | Yang H, Bell MGH (1998) Models and algorithm for road network design: a review and some new developments. Transp Rev 18(3):257–278 · doi:10.1080/01441649808717016 |

[38] | Yang H, Yagar S (1994) Traffic assignment and traffic control in general freeway-arterial corridor systems. Transp Res B 28:463–486 · doi:10.1016/0191-2615(94)90015-9 |

[39] | Yang H, Meng Q, Liu GS (2004) The generalized transportation network optimization problem: models and algorithms. Working Paper, The Hong Kong University of Science and Technology |