zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks. (English) Zbl 1175.90085
Summary: Complex networks are widespread in real-world systems of engineering, physics, biology, and sociology. This paper is concerned with the problem of synchronization for stochastic discrete-time drive-response networks. A dynamic feedback controller has been proposed to achieve the goal of the paper. Then, based on the Lyapunov second method and LMI (linear matrix inequality) optimization approach, a delay-independent stability criterion is established that guarantees the asymptotical mean-square synchronization of two identical delayed networks with stochastic disturbances. The criterion is expressed in terms of LMIs, which can be easily solved by various convex optimization algorithms. Finally, two numerical examples are given to illustrate the proposed method.
MSC:
90B15Network models, stochastic (optimization)
References:
[1]Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002)
[2]Wang, X., Chen, G.: Synchronization in small-world dynamical networks. Int. J. Bifurc. Chaos 12, 187–192 (2002) · doi:10.1142/S0218127402004292
[3]Rangarajan, G., Ding, M.: Stability of synchronization chaos in coupled dynamical systems. Phys. Lett. A 296, 204–209 (2002) · Zbl 0994.37026 · doi:10.1016/S0375-9601(02)00051-8
[4]Li, Z., Chen, G.: Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits Syst.-II 53, 23–33 (2006) · doi:10.1109/TCSII.2005.854314
[5]Lu, J.H., Yu, X.H., Chen, G., Cheng, D.Z.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits Syst.-I 51, 787–796 (2004) · doi:10.1109/TCSI.2004.823672
[6]Park, J.H.: A novel criterion for global asymptotic stability of BAM neural networks with time delays. Chaos Solitons Fractals 29, 446–453 (2006) · Zbl 1121.92006 · doi:10.1016/j.chaos.2005.08.018
[7]Park, J.H., Won, S.: Asymptotic stability of neutral systems with multiple delays. J. Optim. Theory Appl. 103, 183–200 (1999) · Zbl 0947.65088 · doi:10.1023/A:1021781602182
[8]Park, J.H.: Convex optimization approach to dynamic output feedback control for delay differential systems of neutral type. J. Optim. Theory Appl. 127, 411–423 (2005) · Zbl 1113.93048 · doi:10.1007/s10957-005-6552-7
[9]Park, J.H.: Robust stabilization for dynamic systems with multiple time-varying delays and nonlinear uncertainties. J. Optim. Theory Appl. 108, 155–174 (2001) · Zbl 0981.93069 · doi:10.1023/A:1026470106976
[10]Lu, J., Cao, J.: Adaptive synchronization of uncertain dynamical networks with delayed coupling. Nonlinear Dyn. 53, 107–115 (2008) · Zbl 1182.92007 · doi:10.1007/s11071-007-9299-x
[11]Li, C.G., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–278 (2004) · doi:10.1016/j.physa.2004.05.058
[12]Zhi, L.: Global synchronization of general delayed dynamical networks. Chin. Phys. Lett. 24, 1869–1872 (2007) · doi:10.1088/0256-307X/24/7/022
[13]Wang, Z., Shu, H., Fang, J., Liu, X.: Robust stability for stochastic Hopfield neural networks with time delay. Nonlinear Anal.: Real World. Appl. 7, 1119–1128 (2006) · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[14]Wan, L., Sun, J.: Mean square exponential stability of stochastic delayed Hopfield neural networks. Phys. Lett. A 343, 206–318 (2005) · Zbl 1194.37186 · doi:10.1016/j.physleta.2005.06.024
[15]Wan, L., Zhou, Q.: Convergence analysis of stochastic hybrid bidirectional associative memory neural networks with delays. Phys. Lett. A 370, 423–432 (2007) · doi:10.1016/j.physleta.2007.05.095
[16]Liang, J., Wang, Z., Liu, X.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53, 153–165 (2008) · Zbl 1172.92002 · doi:10.1007/s11071-007-9303-5
[17]Park, J.H., Lee, S.G.: An LMI approach to dynamic controller design for uncertain discrete-time system. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E85A, 1176–1180 (2002)
[18]Park, J.H.: On dynamic output feedback guaranteed cost control of uncertain discrete-delay systems: An LMI optimization approach. J. Optim. Theory Appl. 121, 147–162 (2004) · Zbl 1061.93079 · doi:10.1023/B:JOTA.0000026135.99294.32
[19]Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)
[20]Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output feedback control via LMI optimization. IEEE Trans. Autom. Control 42, 896–911 (1997) · Zbl 0883.93024 · doi:10.1109/9.599969
[21]Gahinet, P., Nemirovskii, A., Laub, A., Chilali, M.: LMI Control Toolbox. MathWorks, Matick (1995)