zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Passivity-based sliding mode control of uncertain singular time-delay systems. (English) Zbl 1175.93065
Summary: The problem of Sliding Mode Control (SMC) with passivity of a class of uncertain nonlinear singular time-delay systems is studied. An integral-type switching surface function is designed by taking the singular matrix into account, thus the resulting sliding mode dynamics is a full-order uncertain singular time-delay system. By introducing some slack matrices, a delay-dependent sufficient condition is proposed in terms of linear matrix inequality, which guarantees the sliding mode dynamics to be generalized quadratically stable and robustly passive. The passification solvability condition is then established. Moreover, a SMC law and an adaptive SMC law are synthesized to drive the system trajectories onto the predefined switching surface in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theory.
MSC:
93B35Sensitivity (robustness) of control systems
93B12Variable structure systems
93D99Stability of control systems
93C10Nonlinear control systems
93C41Control problems with incomplete information