zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic linear quadratic regulation for discrete-time linear systems with input delay. (English) Zbl 1175.93246
Summary: This paper considers the stochastic linear Quadratic Regulation (LQR) problem for systems with input delay and stochastic parameter uncertainties in the state and input matrices. The problem is known to be difficult due to the presence of interactions among the delayed input channels and the stochastic parameter uncertainties in the channels. The key to our approach is to convert the LQR control problem into an optimization one in a Hilbert space for an associated backward stochastic model and then obtain the optimal solution to the stochastic LQR problem by exploiting the dynamic programming approach. Our solution is given in terms of two generalized Riccati difference equations of the same dimension as that of the plant.
93E20Optimal stochastic control (systems)
49N10Linear-quadratic optimal control problems
93C55Discrete-time control systems