[1] | Cheng, Z., Cao, J.D.: Bifurcation and stability analysis of a neural network model with distributed delays. Nonlinear Dyn. 46(4), 363–373 (2006) · Zbl 1169.92001 · doi:10.1007/s11071-006-9026-z |

[2] | Nayfeh, A.H.: Method of Normal Forms. Wiley, New York (1993) |

[3] | Yu, P., Bi, Q.: Symbolic computation of normal forms for semi-simple cases. Nonlinear Dyn. 27(1), 19–53 (2002) · Zbl 0994.65140 · doi:10.1023/A:1017993026651 |

[4] | Leung, A.Y.T., Zhang, Q.C.: Normal form computation without central manifold reduction. J. Sound Vib. 266(2), 261–279 (2003) · doi:10.1016/S0022-460X(02)01626-7 |

[5] | Ushiki, S.: Normal form for singularities of vector fields. Jpn. J. Ind. Appl. Math. 1, 1–34 (1984) · Zbl 0578.58029 · doi:10.1007/BF03167860 |

[6] | Wang, D.: An introduction to the normal form theory of ordinary differential equations. Adv. Math. 19(1), 38–71 (1990) |

[7] | Yu, P.: Simplest normal forms of Hopf and generalized Hopf bifurcations. Int. J. Bifurc. Chaos 9(10), 1917–1939 (1999) · Zbl 1089.37528 · doi:10.1142/S0218127499001401 |

[8] | Yu, P.: Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling. J. Comput. Appl. Math. 144(1–2), 359–373 (2002) · Zbl 1019.65043 · doi:10.1016/S0377-0427(01)00573-8 |

[9] | Zhang, Q., He, X., Hu, L.: Computation of the simplest normal form from a bifurcation system with parameters. J. Vib. Eng. 18(4), 495–499 (2005) |

[10] | Zhang, Q., Hu, S., Wang, W.: Computation of the simplest normal form of semi-simple system without central manifold reduction. Tianjin Daxue Xuebao 39(7), 773–776 (2006) |

[11] | Xu, J.: Co-dimension 2 bifurcations and chaos in cantilevered pipe conveying time-varying fluid with three-to-one internal resonances. Acta Mech. Sinica 16(3), 245–255 (2003) |