zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential synchronization of chaotic Lur’e systems with delayed feedback control. (English) Zbl 1176.70034
Summary: The exponential synchronization problem is studied in this paper for a class of chaotic Lur’e systems by using delayed feedback control. An augmented Lyapunov functional based approach is proposed to deal with this issue. A delay-dependent condition is established such that the controlled slave system can exponentially synchronize with the master system. It is shown that the delayed feedback gain matrix and the exponential decay rate can be obtained by solving a set of linear matrix inequalities. The decay coefficient can be also easily calculated. Finally, as an example, the Chua’s circuit is used to illustrate the effectiveness of the developed approach and the improvement over some existing results.
70Q05Control of mechanical systems (general mechanics)
70K55Transition to stochasticity (chaotic behavior)
93B52Feedback control
[1]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)
[3]Almeida, D.I.R., Alvarez, J.: Robust synchronization of nonlinear SISO systems using sliding mode control. Nonlinear Dyn. 46, 293–306 (2006) · Zbl 1170.70385 · doi:10.1007/s11071-006-9043-y
[4]Hasler, H.: Synchronization principles and applications. In: Circuits and Systems: Tutorials IEEE-ISCAS’94, pp. 314–326 (1994)
[5]Huang, T., Li, C., Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18, 033122 (2008) · doi:10.1063/1.2967848
[6]Liang, J., Wang, Z., Liu, X.: Exponential synchronization of stochastic delayed discrete-time complex networks. Nonlinear Dyn. 53, 153–165 (2008) · Zbl 1172.92002 · doi:10.1007/s11071-007-9303-5
[7]Madan, R.N. (ed.): Chua’s Circuit: A Paradigm for Chaos. World Scientific, Singapore (1993)
[8]Yalçin, M.E., Suykens, J.A.K., Vandewalle, J.: Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua’s circuit. IEEE Trans. Circ. Syst. I 47, 425–429 (2000) · doi:10.1109/81.841929
[9]Kapitaniak, T., Chua, L.O.: Hyperchaotic attractors of unidirectionally-coupled Chua’s circuit. Int. J. Bifurc. Chaos 4, 477–482 (1994) · Zbl 0813.58037 · doi:10.1142/S0218127494000356
[10]Vidyasagar, M.: Nonlinear Systems Analysis. Prentice-Hall, Englewood Cliffs (1993)
[11]Curran, P.F., Suykens, J.A.K., Chua, L.O.: Absolute stability theory and master–slave synchronization. Int. J. Bifurc. Chaos 7, 2891–2896 (1997) · Zbl 0911.93044 · doi:10.1142/S0218127497001977
[12]Suykens, J.A.K., Curran, P.F., Chua, L.O.: Robust synthesis for master–slave synchronization of Lur’e systems. IEEE Trans. Circ. Syst. I 46, 841–850 (1999) · Zbl 1055.93549 · doi:10.1109/81.774230
[13]Suykens, J.A.K., Curran, P.F., Vandewalle, J., Chua, L.O.: Robust nonlinear H synchronization of chaotic Lur’e systems. IEEE Trans. Circ. Syst. I 44, 891–904 (1997) · doi:10.1109/81.633878
[14]Suykens, J.A.K., Vandewalle, J.: Master–slave synchronization of Lur’e systems. Int. J. Bifurc. Chaos 7, 665–669 (1997) · Zbl 0925.93342 · doi:10.1142/S0218127497000455
[15]Chen, H.F., Liu, J.M.: Open-loop chaotic synchronization of injection-locked semiconductor lasers with Gigahertz range modulation. IEEE J. Quantum Electron. 36, 27–34 (2000) · doi:10.1109/3.817635
[16]Cao, J., Li, H.-X., Ho, D.W.C.: Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Solitons Fractals 23, 1285–1298 (2005)
[17]Huang, H., Li, H.-X., Zhong, J.: Master–slave synchronization of general Lur’e systems with time-varying delay and parameter uncertainty. Int. J. Bifurc. Chaos 16, 281–294 (2006) · Zbl 1097.94004 · doi:10.1142/S0218127406014800
[18]Yalçin, M.E., Suykens, J.A.K., Vandewalle, J.: Master–slave synchronization of Lur’e systems with time-delay. Int. J. Bifurc. Chaos 11, 1707–1722 (2001) · doi:10.1142/S021812740100295X
[19]Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)
[20]Gahinet, P., Nemirovsky, A., Laub, A.J., Chilali, M.: LMI Control Toolbox: For Use with Matlab. The Math. Works, Natick (1995)
[21]Han, Q.-L.: On designing time-varying delay feedback controllers for master–slave synchronization of Lur’e systems. IEEE Trans. Circ. Syst. I 54, 1573–1583 (2007) · doi:10.1109/TCSI.2007.899627
[22]Han, Q.-L.: New delay-dependent synchronization criteria for Lur’e systems using time delay feedback control. Phys. Lett. A 360, 563–569 (2007) · Zbl 1236.93072 · doi:10.1016/j.physleta.2006.08.076
[23]Souza, F.O., Palhares, R.M., Mendes, E.M.A.M., Tôrres, L.A.B.: Further results on master–slave synchronization of general Lur’e systems with time-varying delay. Int. J. Bifurc. Chaos 18, 187–202 (2008) · Zbl 1146.93031 · doi:10.1142/S0218127408020227
[24]Xiang, J., Li, Y., Wei, W.: An improved condition for master–slave synchronization of Lur’e systems with time delay. Phys. Lett. A 362, 154–158 (2007) · doi:10.1016/j.physleta.2006.06.068
[25]He, Y., Wen, G., Wang, Q.-G.: Delay-dependent synchronization criterion for Lur’e systems with delay feedback control. Int. J. Bifurc. Chaos 16, 3087–3091 (2006) · Zbl 1139.93349 · doi:10.1142/S0218127406016677
[26]Gu, K., Kharitonov, V., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003)