[1] | Brimberg, J., & Love, R. F. (1993). Global convergence of a generalized iterative procedure for the minisum location problem with p distances. Operations Research, 41, 1153–1163. · Zbl 0795.90037 · doi:10.1287/opre.41.6.1153 |

[2] | Chandrasekaran, R., & Tamir, A. (1989). Open questions concerning Weiszfeld’s algorithm for the Fermat-Weber location problem. Mathematical Programming, 44, 293–295. · Zbl 0683.90026 · doi:10.1007/BF01587094 |

[3] | Drezner, T. (1994). Optimal continuous location of a retail facility, facility attractiveness, and market share: an interactive model. Journal of Retailing, 70, 49–64. · doi:10.1016/0022-4359(94)90028-0 |

[4] | Drezner, T. (1995). Competitive facility location in the plane. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 285–300). |

[5] | Drezner, T., & Drezner, Z. (1997). Replacing discrete demand with continuous demand in a competitive facility location problem. Naval Research Logistics, 44, 81–95. · doi:10.1002/(SICI)1520-6750(199702)44:1<81::AID-NAV5>3.0.CO;2-I |

[6] | Drezner, Z., & Drezner, T. (1998). Applied location models. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 79–120). Mahwah: Erlbaum. |

[7] | Drezner, T., & Drezner, Z. (2004). Finding the optimal solution to the Huff competitive location model. Computational Management Science, 1, 193–208. · Zbl 1115.90357 · doi:10.1007/s10287-004-0009-6 |

[8] | Drezner, Z., Wesolowsky, G. O., & Drezner, T. (1998). On the logit approach to competitive facility location. Journal of Regional Science, 38, 313–327. · doi:10.1111/1467-9787.00094 |

[9] | Drezner, Z., Scott, C. H., & Song, J. S. (2003). The central warehouse location problem revisited. IMA Journal of Management Mathematics, 14, 321–336. · Zbl 1093.90021 · doi:10.1093/imaman/14.4.321 |

[10] | Eyster, J. W., White, J. A., & Wierwille, W. W. (1973). On solving multifacility location problems using a hyperboloid approximation procedure. AIIE Transactions, 5, 1–6. |

[11] | Kuhn, H. W. (1967). On a pair of dual nonlinear programs. In J. Abadie (Ed.), Methods of nonlinear programming. Amsterdam: North-Holland. |

[12] | Love, R. F., Morris, J. G., & Wesolowsky, G. O. (1988). Facilities location: models and methods. New York: North-Holland. |

[13] | Morris, J. G. (1981). Convergence of the Weiszfeld algorithm for Weber problems using a generalized distance function. Operations Research, 29, 37–48. · Zbl 0452.90023 · doi:10.1287/opre.29.1.37 |

[14] | Ostresh, L. M. Jr. (1978). On the convergence of a class of iterative methods for solving the Weber location problem. Operations Research, 26, 597–609. · Zbl 0396.90073 · doi:10.1287/opre.26.4.597 |

[15] | Puerto, J., & Rodriguez-Chia, A. M. (1999). Location of a moving service facility. Mathematical Methods of Operations Research, 49, 373–393. · Zbl 0941.90047 · doi:10.1007/s001860050055 |

[16] | Weber, A. (1909). Über Den Standort Der Industrien, 1. Teil: Reine Theorie Des Standortes. Tübingen. English translation: On the location of industries. University of Chicago Press, Chicago (1929). (English translation by C.J. Friedeich (1957), Theory of the location of industries. Chicago University Press, Chicago). |

[17] | Weiszfeld, E. (1937). Sur le Point Pour Lequel la Somme des Distances de n Points Donnés est Minimum. Tohoku Mathematical Journal, 43, 355–386. |