zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some convex programs without a duality gap. (English) Zbl 1176.90464

The author studies the convex programming problem:

v P =minf o (x)s.t.f i (x)0,i=1,...,m(P)

where each f i : n (-,) is a proper convex lower semicontinuous function and its associated dual:

v D =maxq(μ)whereq(μ)=inf x {f o (x)+ i=1 m f i (x)},μ0·(D)

The main result concerns the non-existence of the duality gap i.e. v P =v D . It is shown that for separable functions f o ,f 1 ,...,f m the relation v P =v D holds under the assumption of domf o 1=1 m domf i where domf={x|f(x)<}. The author gives also a sufficient condition involving weakly analytic functions.

MSC:
90C25Convex programming
90C46Optimality conditions, duality
References:
[1]Auslender A. (2000). Existence of optimal solutions and duality results under weak conditions. Math. Program. 88: 45–59 · doi:10.1007/PL00011377
[2]Auslender A. and Teboulle M. (2003). Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York
[3]Bazaraa M.S., Sherali H.D. and Shetty C.M. (1993). Nonlinear Programming: Theory and Algorithms. Wiley, New York
[4]Ben-Tal A. and Zibulevsky M. (1997). Penalty/barrier multiplier methods for convex programming problems. SIAM J. Optim. 7: 347–366 · Zbl 0872.90068 · doi:10.1137/S1052623493259215
[5]Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic, New York (1982); republished by Athena Scientific, Belmont (1999)
[6]Bertsekas D.P. (1999). Nonlinear Programming, 2nd edn. Athena Scientific, Belmont
[7]Bertsekas D.P., Nedić A. and Ozdaglar A.E. (2003). Convex Analysis and Optimization. Athena Scientific, Belmont
[8]Borwein J.M. and Lewis A.S. (2000). Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York
[9]Champion T. (2004). Duality gap in convex programming. Math. Program. 99: 487–498 · Zbl 1084.90032 · doi:10.1007/s10107-003-0461-z
[10]Dinh N., Jeyakumar V. and Lee G.M. (2005). Sequential Lagrangian conditions for convex programs with applications to semidefinite programming. J. Optim. Theory Appl. 125: 85–112 · Zbl 1114.90083 · doi:10.1007/s10957-004-1712-8
[11]Golstein, E.G.: Theory of Convex Programming. English translation by K. Makowski. American Mathematical Society, Providence (1972)
[12]Hoffman A.J. (1952). On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49: 263–265
[13]Kiwiel K.C. (1997). Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35: 1142–1168 · Zbl 0890.65061 · doi:10.1137/S0363012995281742
[14]Klatte D. (1984). sufficient condition for lower semicontinuity of solution sets of systems of convex inequalities. Math. Program. Study 21: 139–149
[15]Korf L.A. (2004). Stochastic programming duality: L multipliers for unbounded constraints with an application to mathematical finance. Math. Program. 99: 241–259 · Zbl 1053.46052 · doi:10.1007/s10107-003-0419-1
[16]Kummer, B.: Stability and weak duality in convex programming without regularity. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Math. Nat. R. XXX, 381–386 (1981)
[17]Nesterov Y., Todd M.J. and Ye Y. (1999). Infeasible-start primal-dual methods and infeasibility detectors for nonlinear programming problems. Math. Program. 84: 227–267
[18]Rockafellar R.T. (1970). Convex Analysis. Princeton University Press, Princeton
[19]Rockafellar, R.T.: Some convex programs whose duals are linearly constrained. In: Rosen, J.B. et al (eds.) Nonlinear Programming, pp. 293-322. Academic, New York (1970)
[20]Rockafellar R.T. (1971). Ordinary convex programs without a duality gap. J. Optim. Theory Appl. 7: 43–148 · Zbl 0198.24604 · doi:10.1007/BF00932472
[21]Rockafellar R.T. (1976). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1: 97–116 · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[22]Rockafellar, R.T.: Network Flows and Monotropic Programming. Wiley-Interscience, New York (1984); republished by Athena Scientific, Belmont (1998)
[23]Tseng P. (2001). An ϵ-out-of-kilter method for monotropic programming problems. Math. Oper. Res. 26: 221–233 · Zbl 1082.90558 · doi:10.1287/moor.26.2.221.10557
[24]Wolkowicz H. (1983). Method of reduction in convex programming. J. Optim. Theory Appl. 40: 349–378 · Zbl 0513.90068 · doi:10.1007/BF00933505