zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterative algorithms for equilibrium problems. (English) Zbl 1176.90640
Summary: We consider equilibrium problems in the framework of the formulation proposed by Blum and Oettli, which includes variational inequalities, Nash equilibria in noncooperative games, and vector optimization problems, for instance, as particular cases. We show that such problems are particular instances of convex feasibility problems with infinitely many convex sets, but with additional structure, so that projection algorithms for convex feasibility can be modified in order to improve their convergence properties, mainly achieving global convergence without either compactness or coercivity assumptions. We present a sequential projections algorithm with an approximately most violated constraint control strategy, and two variants where exact orthogonal projections are replaced by approximate ones, using separating hyperplanes generated by subgradients. We include full convergence analysis of these algorithms.

MSC:
90C47Minimax problems
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
49J40Variational methods including variational inequalities
49M37Methods of nonlinear programming type in calculus of variations
65K05Mathematical programming (numerical methods)