zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Heuristics for the 0-1 multidimensional knapsack problem. (English) Zbl 1176.90657
Summary: Two heuristics for the 0-1 multidimensional knapsack problem (MKP) are presented. The first one uses surrogate relaxation, and the relaxed problem is solved via a modified dynamic-programming algorithm. The heuristics provides a feasible solution for (MKP). The second one combines a limited-branch-and-cut-procedure with the previous approach, and tries to improve the bound obtained by exploring some nodes that have been rejected by the modified dynamic-programming algorithm. Computational experiences show that our approaches give better results than the existing heuristics, and thus permit one to obtain a smaller gap between the solution provided and an optimal solution.
90C59Approximation methods and heuristics
90C39Dynamic programming
90C57Polyhedral combinatorics, branch-and-bound, branch-and-cut