zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stage-structured single species model with pulse input in a polluted environment. (English) Zbl 1176.92051
Summary: We study a stage-structured single species model with impulsive input in a polluted environment. Using a discrete dynamical system determined by the stroboscopic map, we obtain conditions for global attractivity, for species-extinction, and periodic solutions of the investigated system. By the use of the theory of impulsive delayed differential equations, we also obtain sufficient conditions for the permanence of the system. Our results reveal that long mature periods of the populations in polluted environments can cause it to go extinct.
MSC:
92D40Ecology
34K45Functional-differential equations with impulses
37N25Dynamical systems in biology
92D25Population dynamics (general)
References:
[1]Aiello, W.G., Freedman, H.I.: A time-delay model of single-species growth with stage structure. Math. Biosci. 101(2), 139–153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[2]Bainov, D., Simeonov, P.: Impulsive differential equations: periodic solutions and applications. Longman 66 (1993)
[3]Dubey, B.: Modelling the effect of toxicant on forestry resources. Indian J. Pure Appl. Math. 28, 1–12 (1997)
[4]Freedman, H.I., Shukla, J.B.: Models for the effect of toxicant in a single-species and predator–prey systems. J. Math. Biol. 30, 15–30 (1991) · Zbl 0825.92125 · doi:10.1007/BF00168004
[5]Hallam, T.G., Clark, C.E., Jordan, G.S.: Effects of toxicant on population: A qualitative approach II. First order kinetics, J. Math. Biol. 18, 25–37 (1983)
[6]Hallam, T.G., Clark, C.E., Lassider, R.R.: Effects of toxicant on population: A qualitative approach I. Equilibrium environmental exposure. Ecol. Model 18, 291–340 (1983) · doi:10.1016/0304-3800(83)90019-4
[7]Hass, C.N.: Application of predator–prey models to disinfection. J. Water Pollut. Control Fed. 53, 378–386 (1981)
[8]Hsu, S.B., Waltman, P.: Competition in the chemostat when one competitor produces a toxin. Japan J. Ind. Appl. Math. 15, 471–490 (1998) · Zbl 0982.92035 · doi:10.1007/BF03167323
[9]Jenson, A.L., Marshall, J.S.: Application of surplus production model to access environmental impacts in exploited populations of Daphnia pluex in the laboratory. Environ. Pollut. (Ser. A) 28, 273–280 (1982) · doi:10.1016/0143-1471(82)90143-X
[10]Jiao, J.J., Chen, L.S.: Delayed stage-structured predator–prey model with impulsive perturbations on predator and chemical control on prey. Appl. Math. Mech. 28(12), 1679–1689 (2007) · Zbl 1231.34020 · doi:10.1007/s10483-007-1215-y
[11]Jiao, J., Chen, L.: Global Attractivity of a stage-structure variable coefficients predator–prey system with time delay and impulsive perturbations on predators. Int. J. Biomath. 1(2), 197–208 (2008) · Zbl 1155.92355 · doi:10.1142/S1793524508000163
[12]Jiao, J.J., Meng, X.Z., Chen, L.S.: A stage-structured Holling mass defense predator–prey model with impulsive perturbations on predators. Appl. Math. Comput. 189(2), 1448–1458 (2007) · Zbl 1117.92053 · doi:10.1016/j.amc.2006.12.043
[13]Lakshmikantham, V., Bainov, D.D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
[14]Liu, B., Chen, L.S., Zhang, Y.J.: The effects of impulsive toxicant input on a population in a polluted environment. J. Biol. Syst. 11, 265–287 (2003) · Zbl 1041.92044 · doi:10.1142/S0218339003000907
[15]Lu, Z.H., Chen, L.S.: Global attractivity of nonautonomous stage-structured population models with dispersal and harvest. J. Comput. Appl. Math. 166, 411–425 (2004) · Zbl 1061.34033 · doi:10.1016/j.cam.2003.08.040
[16]Mukherjee, D.: Persistence and global stability of a population in a polluted environment with delay. J. Biol. Syst. 10, 225–232 (2002) · Zbl 1099.92074 · doi:10.1142/S021833900200055X
[17]Yang, K.: Delay Differential Equation with Application in Population Dynamics. Academic Press, New York (1987), pp. 67–70
[18]Zhang, B.G.: Population’s Ecological Mathematics Modeling. Qingdao Marine University, Qingdao (1990)