zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy linear matrix equation. (English) Zbl 1177.15016
The authors analyze fuzzy linear matrix equations of the form AXB=C for finding its fuzzy solutions, using the parametric form of the fuzzy linear system. The authors also derive necessary and sufficient conditions for the existence of the set of fuzzy solutions.
MSC:
15A24Matrix equations and identities
15B15Fuzzy matrices
References:
[1]Abbasbandy S., Ezzati R., Jafarian A. (2006) LU decomposition method for solving fuzzy system of linear equations. Applied Mathematics and Computation 172: 633–643 · Zbl 1088.65023 · doi:10.1016/j.amc.2005.02.018
[2]Allahviranloo T. (2003) Discussion: A comment on fuzzy linear systems. Fuzzy Sets and Systems 140: 559 · Zbl 1050.15003 · doi:10.1016/S0165-0114(03)00139-8
[3]Allahviranloo T. (2004) Numerical methods for fuzzy system of linear equations. Applied Mathematics and Computation 155: 493–502 · Zbl 1067.65040 · doi:10.1016/S0096-3003(03)00793-8
[4]Allahviranloo T. (2005a) Succesive over relaxation iterative method for fuzzy system of linear equations. Applied Mathematics and Computation 162: 189–196 · Zbl 1062.65037 · doi:10.1016/j.amc.2003.12.085
[5]Allahviranloo T. (2005b) The Adomian decomposition method for fuzzy system of linear equations. Applied Mathematics and Computation 163: 553–563 · Zbl 1069.65025 · doi:10.1016/j.amc.2004.02.020
[6]Allahviranloo T., Afshar Kermani M. (2006) Solution of a fuzzy system of linear equation. Applied Mathematics and Computation 175: 519–531 · Zbl 1095.65036 · doi:10.1016/j.amc.2005.07.048
[7]Allahviranloo T., Ahmady E., Ahmady N., Shams Alketaby Kh. (2006) Block Jacobi two stage method with Gauss Sidel inner iterations for fuzzy systems of linear equations. Applied Mathematics and Computation 175: 1217–1228 · Zbl 1093.65032 · doi:10.1016/j.amc.2005.08.047
[8]Asady B., Abasbandy S., Alavi M. (2005) Fuzzy general linear systems. Applied Mathematics and Computation 169: 34–40 · Zbl 1119.65325 · doi:10.1016/j.amc.2004.10.042
[9]Dehghan M., Hashemi B. (2006) Iterative solution of fuzzy linear systems. Applied Mathematics and Computation 175: 645–674 · Zbl 1137.65336 · doi:10.1016/j.amc.2005.07.033
[10]Friedman M., Ming M., Kandel A. (1998) Fuzzy linear systems. Fuzzy Sets and Systems 96: 201–209 · Zbl 0929.15004 · doi:10.1016/S0165-0114(96)00270-9
[11]Friedman M., Ming M., Kandel A. (2003) Discussion: Author’s reply. Fuzzy Sets and Systems 140: 561 · doi:10.1016/S0165-0114(03)00140-4
[12]Goetschel R., Voxman W. (1986) Elementary calculus. Fuzzy Sets ans Systems 18: 31–43 · Zbl 0626.26014 · doi:10.1016/0165-0114(86)90026-6
[13]Kaleva O. (1987) Fuzzy differential equations. Fuzzy Sets and Systems 24: 301–317 · Zbl 0646.34019 · doi:10.1016/0165-0114(87)90029-7
[14]Lancaster P., Tismenetsky M. (1985) The theory of matrices. Academic Press, London
[15]Ma M., Friedman M., Kandel A. (2000) Duality in fuzzy linear systems. Fuzzy Sets and Systems 109: 55–58 · Zbl 0945.15002 · doi:10.1016/S0165-0114(98)00102-X
[16]Navarra A., Odell P.L., Young D.M. (2001) A representation of general common solution to the matrix equations A 1 × B 1 = C 1 and A 2 × B 2 = C 2 with applications. An International Journal of Computers and Mathematics with Applications 41: 929–935 · Zbl 0983.15016 · doi:10.1016/S0898-1221(00)00330-8
[17]Rao C.R., Mitra S.K. (1971) Generalized inverse of matrices and its applications. Wiley, New York
[18]Wang K., Zheng B. (2006) Inconsistent fuzzy linear systems. Applied Mathematics and Computations 181: 973–981 · Zbl 1122.15004 · doi:10.1016/j.amc.2006.02.019
[19]Wanga X., Zhong Z., Ha M. (2001) Iteration algorithms for solving a system of fuzzy linear equations. Fuzzy Sets and Systems 119: 121–128 · Zbl 0974.65035 · doi:10.1016/S0165-0114(98)00284-X
[20]Wu C.-X., Ma M. (1991) Embedding problem of fuzzy number space: Part I. Fuzzy Sets and Systems 44: 33–38 · Zbl 0757.46066 · doi:10.1016/0165-0114(91)90030-T
[21]Wu C.-X., Ma M. (1992) Embedding problem of fuzzy number space: Part III. Fuzzy Sets and Systems 46: 281–286 · Zbl 0774.54003 · doi:10.1016/0165-0114(92)90142-Q
[22]Zheng B., Wang K. (2006) General fuzzy linear systems. Applied Mathematics and Computation 181: 1276–1286 · Zbl 1122.15005 · doi:10.1016/j.amc.2006.02.027