zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. (English) Zbl 1177.65095
Summary: In order to reduce computational burden and improve the convergence rate of identification algorithms, an auxiliary model based multi-innovation stochastic gradient (AM-MISG) algorithm is derived for the multiple-input single-output systems by means of the auxiliary model identification idea and multi-innovation identification theory. The basic idea is to replace the unknown outputs of the fictitious subsystems in the information vector with the outputs of the auxiliary models and to present an auxiliary model based stochastic gradient algorithm, and then to derive the AM-MISG algorithm by expanding the scalar innovation to innovation vector and introducing the innovation length. The simulation example shows that the proposed algorithms work quite well.
65K10Optimization techniques (numerical methods)
[1]Ding, J.; Ding, F.; Zhang, S.: Parameter multi-input identification of single-output systems based on FIR models and least squares principle, Applied mathematics and computation 197, No. 1, 297-305 (2008) · Zbl 1136.93455 · doi:10.1016/j.amc.2007.07.076
[2]Zheng, W. X.: On a least squares based algorithm for identification of stochastic linear systems, IEEE transactions on signal processing 46, No. 6, 1631-1638 (1998) · Zbl 1039.93065 · doi:10.1109/78.678479
[3]Zheng, W. X.: Least-squares identification of a class of multivariable systems with correlated disturbances, Journal of franklin institute 336, No. 8, 1309-1324 (1999) · Zbl 0967.93093 · doi:10.1016/S0016-0032(99)00038-1
[4]Ding, F.; Chen, T.; L, L. Qiu: Bias compensation based recursive least squares identification algorithm for MISO systems, IEEE transactions on circuits and systems – II: Express briefs 53, No. 5, 349-353 (2006)
[5]Ding, F.; Chen, H. B.; Li, M.: Multi-innovation least squares identification methods based on the auxiliary model for MISO systems, Applied mathematics and computation 187, No. 2, 658-668 (2007) · Zbl 1114.93101 · doi:10.1016/j.amc.2006.08.090
[6]Ding, F.; Shi, Y.; Chen, T.: Performance analysis of estimation algorithms of non-stationary ARMA processes, IEEE transactions on signal processing 54, No. 3, 1041-1053 (2006)
[7]Ding, F.; Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica 41, No. 2, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[8]Ding, F.; Chen, T.: Hierarchical least squares identification methods for multivariable systems, IEEE transactions on automatic control 50, No. 3, 397-402 (2005)
[9]Ding, F.; Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems – I: Regular papers 52, No. 6, 1179-1187 (2005)
[10]Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[11]Ding, F.; Liu, P. X.; Yang, H. Z.: Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems man and cybernetics part A: systems and humans 38, No. 4, 966-975 (2008)
[12]Ding, F.; Yang, H. Z.; Liu, F.: Performance analysis of stochastic gradient algorithms under weak conditions, Science in China series F-information sciences 51, No. 9, 1269-1280 (2008) · Zbl 1145.93050 · doi:10.1007/s11432-008-0117-y
[13]Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[14]Ding, F.; Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40, No. 10, 1739-1748 (2004) · Zbl 1162.93376 · doi:10.1016/j.automatica.2004.05.001
[15]Ding, F.; Chen, T.: Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE transactions on automatic control 50, No. 9, 1436-1441 (2005)
[16]Ding, F.; Shi, Y.; Chen, T.: Auxiliary model based least-squares identification methods for Hammerstein output-error systems, Systems and control letters 56, No. 5, 373-380 (2007) · Zbl 1130.93055 · doi:10.1016/j.sysconle.2006.10.026
[17]Zhang, J. B.; Ding, F.; Shi, Y.: Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems and control letters 58, No. 1, 69-75 (2009) · Zbl 1154.93040 · doi:10.1016/j.sysconle.2008.08.005
[18]Ding, F.; Liu, P. X.; Liu, G.: Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing 89, No. 10, 1883-1890 (2009) · Zbl 1178.94137 · doi:10.1016/j.sigpro.2009.03.020
[19]Han, L. L.; Ding, F.: Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing 19, No. 4, 545-554 (2009)
[20]Han, L. L.; Ding, F.: Identification for multirate multi-input systems using the multi-innovation identification theory, Computers and mathematics with applications 57, No. 9, 1438-1449 (2009) · Zbl 1186.93076 · doi:10.1016/j.camwa.2009.01.005
[21]Ljung, L.: System identification: theory for the user, (1999)
[22]Goodwin, G. C.; Sin, K. S.: Adaptive filtering prediction and control, (1984)
[23]Ding, F.; Chen, T.: Identification of dual-rate systems based on finite impulse response models, International journal of adaptive control and signal processing 18, No. 7, 589-598 (2004) · Zbl 1055.93018 · doi:10.1002/acs.820
[24]Ding, F.; Chen, T.: Identification of Hammerstein nonlinear ARMAX systems, Automatica 41, No. 9, 1479-1489 (2005) · Zbl 1086.93063 · doi:10.1016/j.automatica.2005.03.026
[25]Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein – Wiener ARMAX systems, Computers and mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
[26]Wang, L. Y.; Xie, L.; Wang, X. F.: The residual based interactive stochastic gradient algorithms for controlled moving average models, Applied mathematics and computation 211, No. 2, 442-449 (2009) · Zbl 1162.93037 · doi:10.1016/j.amc.2009.01.069