zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison between the homotopy analysis method and homotopy perturbation method to solve coupled Schrödinger-KdV equation. (English) Zbl 1177.65152
Summary: We apply the homotopy analysis method (HAM) and the homotopy perturbation method (HPM) to obtain approximate analytical solutions of the coupled Schrödinger-Korteweg-de Vries (KdV) equation. The results show that HAM is a very efficient method and that HPM is a special case of HAM.
MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
35Q55NLS-like (nonlinear Schrödinger) equations
Software:
BVPh
References:
[1]Batiha, B., Noorani, M.S.M., Hashim, I.: Numerical solution of sine-Gordon equation by variational iteration method. Phys. Lett. A 370, 437–440 (2007) · Zbl 1209.65105 · doi:10.1016/j.physleta.2007.05.087
[2]Fan, E., Hon, Y.C.: Applications of extended tanh method to ’special’ types of nonlinear equations. Appl. Math. Comput. 141, 351–358 (2003) · Zbl 1027.65128 · doi:10.1016/S0096-3003(02)00260-6
[3]Kaya, D., El-Sayed, S.M.: On the solution of the coupled Schrödinger-KdV equation by the decomposition method. Phys. Lett. A 313, 82–88 (2003) · Zbl 1040.35099 · doi:10.1016/S0375-9601(03)00723-0
[4]Abdou, M.A., Soliman, A.A.: New applications of variational iteration method. Physica D 211, 1–8 (2005) · Zbl 1084.35539 · doi:10.1016/j.physd.2005.08.002
[5]Ray, S.: An application of the modified decomposition method for the solution of the coupled Klein–Gordon–Schrodinger equation. Commun. Nonlinear Sci. Numer. Simul. 13, 1311–1317 (2008) · Zbl 1221.65283 · doi:10.1016/j.cnsns.2006.12.010
[6]He, J.-H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350, 87–88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[7]He, J.-H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26, 695–700 (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[8]Inc, M., Ugurlu, Y.: Numerical simulation of the regularized long wave equation by He’s homotopy perturbation method. Phys. Lett. A 369, 173–179 (2007) · Zbl 1209.65110 · doi:10.1016/j.physleta.2007.04.074
[9]Momani, S., Noor, M.: Numerical comparison of methods for solving a special fourth-order boundary value problem. Appl. Math. Comput. 191, 218–224 (2007) · Zbl 1193.65135 · doi:10.1016/j.amc.2007.02.081
[10]Sweilam, N.H.: Variational iteration method for solving cubic nonlinear Schrodinger equation. J. Comput. Appl. Math. 207, 155–163 (2007) · Zbl 1119.65098 · doi:10.1016/j.cam.2006.07.023
[11]Khuri, S.A.: A new approach to the cubic Schrodinger equation: an application of the decomposition technique. Appl. Math. Comput. 97, 251–254 (1998) · Zbl 0940.35187 · doi:10.1016/S0096-3003(97)10147-3
[12]Liao, S.J.: Homotopy analysis method and its application. PhD dissertation, Shanghai Jiao Tong University (1992)
[13]Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton (2003)
[14]Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[15]Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006) · Zbl 1236.80010 · doi:10.1016/j.physleta.2006.07.065
[16]Liao, S.J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[17]Hayat, T., Khan, M.: Homotopy solutions for a generalized second-grade fluid past a porous plate. Nonlinear Dyn. 42, 395–405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[18]Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. Commun. Nonlinear Sci. Numer. Simul. 13, 539–546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[19]Liao, S.J.: An explicit totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlinear Mech. 34, 759–778 (1999) · Zbl 05137896 · doi:10.1016/S0020-7462(98)00056-0
[20]Liao, S.J.: On the homotopy anaylsis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[21]Alomari, A.K., Noorani, M.S.M., Nazar, R.: Explicit series solutions of some linear and nonlinear Schrodinger equations via the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. (2008). doi: 10.1016/j.cnsns.2008.01.008
[22]Alomari, A.K., Noorani, M.S.M., Nazar, R.: On the homotopy analysis method for the exact solutions of Helmholtz equation. Chaos Solitons Fractals (2008). doi: 10.1016/j.chaos.2008.07.038
[23]Alomari, A.K., Noorani, M.S.M., Nazar, R.: Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system. Commun. Nonlinear Sci. Numer. Simul. (2008). doi: 10.1016/j.cnsns.2008.06.011
[24]Alomari, A.K., Noorani, M.S.M., Nazar, R.: Solutions of heat-like and wave-like equations with variable coefficients by means of the homotopy analysis method. Chin. Phys. Lett. 25, 589–592 (2008) · doi:10.1088/0256-307X/25/2/064
[25]Bataineh, A.S., Alomari, A.K., Noorani, M.S.M., Hashim, I., Nazar, R.: Series solutions of systems of nonlinear fractional differential equations. Acta Appl. Math. (2008). doi: 10.1007/s10440-008-9271-x
[26]Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 239–263 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[27]Allan, F.M., Syam, M.I.: On the analytic solution of non-homogeneous Blasius problem. J. Comput. Appl. Math. 182, 362–371 (2005) · Zbl 1071.65108 · doi:10.1016/j.cam.2004.12.017
[28]Abbasbandy, S.: The application of homotopy analysis method to solve a generalized Hirota–Satsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007) · Zbl 05200826 · doi:10.1016/j.physleta.2006.09.105
[29]Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solving systems of ODEs by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 13, 2060–2070 (2008) · Zbl 1221.65194 · doi:10.1016/j.cnsns.2007.05.026
[30]Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[31]Sajid, M., Hayat, T., Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007) · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y