zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
GSA: A gravitational search algorithm. (English) Zbl 1177.90378
Summary: In recent years, various heuristic optimization methods have been developed. Many of these methods are inspired by swarm behaviors in nature. In this paper, a new optimization algorithm based on the law of gravity and mass interactions is introduced. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The proposed method has been compared with some well-known heuristic search methods. The obtained results confirm the high performance of the proposed method in solving various nonlinear functions.

MSC:
90C30Nonlinear programming
90C59Approximation methods and heuristics
68T20AI problem solving (heuristics, search strategies, etc.)
68P10Searching and sorting
68W05Nonnumerical algorithms
References:
[1]Badr, A.; Fahmy, A.: A proof of convergence for ant algorithms, Information sciences 160, 267-279 (2004) · Zbl 1076.68070 · doi:10.1016/j.ins.2003.08.018
[2]Baojiang, Z.; Shiyong, L.: Ant colony optimization algorithm and its application to neuro-fuzzy controller design, Journal of systems engineering and electronics 18, 603-610 (2007)
[3]Bergh, F. V. D.; Engelbrecht, A. P.: A study of particle swarm optimization particle trajectories, Information sciences 176, 937-971 (2006) · Zbl 1093.68105 · doi:10.1016/j.ins.2005.02.003
[4]Cordon, O.; Damas, S.; Santamarı, J.: A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm, Pattern recognition letters 27, 1191-1200 (2006)
[5]Dorigo, M.; Maniezzo, V.; Colorni, A.: The ant system: optimization by a colony of cooperating agents, IEEE transactions on systems, man, and cybernetics – part B 26, No. 1, 29-41 (1996)
[6]Du, W.; Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization, Information sciences 178, 3096-3109 (2008)
[7]Ellabib, I.; Calamai, P.; Basir, O.: Exchange strategies for multiple ant colony system, Information sciences 177, 1248-1264 (2007)
[8]Farmer, J. D.; Packard, N. H.; Perelson, A. S.: The immune system, adaptation and machine learning, Physica D 2, 187-204 (1986)
[9]Formato, R. A.: Central force optimization: a new metaheuristic with applications in applied electromagnetics, Progress in electromagnetics research 77, 425-491 (2007)
[10]Formato, R. A.: Central force optimization: a new nature inspired computational framework for multidimensional search and optimization, Studies in computational intelligence 129, 221-238 (2008)
[11]Gazi, V.; Passino, K. M.: Stability analysis of social foraging swarms, IEEE transactions on systems, man, and cybernetics – part B 34, No. 1, 539-557 (2004)
[12]Hamzaçebi, C.: Improving genetic algorithms’ performance by local search for continuous function optimization, Applied mathematics and computation 196, No. 1, 309-317 (2008) · Zbl 1133.65031 · doi:10.1016/j.amc.2007.05.068
[13]Haupt, R. L.; Haupt, E.: Practical genetic algorithms, (2004)
[14]Holliday, D.; Resnick, R.; Walker, J.: Fundamentals of physics, (1993)
[15]Kalinlia, A.; Karabogab, N.: Artificial immune algorithm for IIR filter design, Engineering applications of artificial intelligence 18, 919-929 (2005)
[16]Karakuzu, C.: Fuzzy controller training using particle swarm optimization for nonlinear system control, ISA transactions 47, No. 2, 229-239 (2008)
[17]J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942 – 1948.
[18]Kenyon, I. R.: General relativity, (1990)
[19]Kim, D. H.; Abraham, A.; Cho, J. H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization, Information sciences 177, 3918-3937 (2007)
[20]Kim, T. H.; Maruta, I.; Sugie, T.: Robust PID controller tuning based on the constrained particle swarm optimization, Automatica 44, 1104-1110 (2008)
[21]Kirkpatrick, S.; Gelatto, C. D.; Vecchi, M. P.: Optimization by simulated annealing, Science 220, 671-680 (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[22]A. Lazar, R.G. Reynolds, Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets, Artificial Intelligence Laboratory, Department of Computer Science, Wayne State University, 2003.
[23]Lin, Y. L.; Chang, W. D.; Hsieh, J. G.: A particle swarm optimization approach to nonlinear rational filter modeling, Expert systems with applications 34, 1194-1199 (2008)
[24]Liu, Y.; Yi, Z.; Wu, H.; Ye, M.; Chen, K.: A tabu search approach for the minimum sum-of-squares clustering problem, Information sciences 178, 2680-2704 (2008) · Zbl 1183.68541 · doi:10.1016/j.ins.2008.01.022
[25]Lozano, M.; Herrera, F.; Cano, J. R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms, Information sciences 178, 4421-4433 (2008)
[26]Mansouri, R.; Nasseri, F.; Khorrami, M.: Effective time variation of G in a model universe with variable space dimension, Physics letters 259, 194-200 (1999)
[27]Nezamabadi-Pour, H.; Saryazdi, S.; Rashedi, E.: Edge detection using ant algorithms, Soft computing 10, 623-628 (2006)
[28]E. Rashedi, Gravitational Search Algorithm, M.Sc. Thesis, Shahid Bahonar University of Kerman, Kerman, Iran, 2007 (in Farsi).
[29]S.J. Russell, P. Norvig, Artificial Intelligence a Modern Approach, Prentice Hall, Upper Saddle River, New Jersy, 1995. · Zbl 0835.68093
[30]Schutz, B.: Gravity from the ground up, (2003)
[31]Tan, X.; Bhanu, B.: Fingerprint matching by genetic algorithms, Pattern recognition 39, 465-477 (2006) · Zbl 1158.68479 · doi:10.1016/j.patcog.2005.09.005
[32]Tang, K. S.; Man, K. F.; Kwong, S.; He, Q.: Genetic algorithms and their applications, IEEE signal processing magazine 13, No. 6, 22-37 (1996)
[33]Tarasewich, P.; Mcmullen, P. R.: Swarm intelligence: power in numbers, Communication of ACM 45, 62-67 (2002)
[34]Tripathi, P. K.; Bandyopadhyay, S.; Pal, S. K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Information sciences 177, 5033-5049 (2007) · Zbl 1121.90130 · doi:10.1016/j.ins.2007.06.018
[35]Wolpert, D. H.; Macready, W. G.: No free lunch theorems for optimization, IEEE transactions on evolutionary computation 1, 67-82 (1997)
[36]Yao, X.; Liu, Y.; Lin, G.: Evolutionary programming made faster, IEEE transactions on evolutionary computation 3, 82-102 (1999)