zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays. (English) Zbl 1177.93075
Summary: By establishing an impulsive-integral inequality, some sufficient conditions about the exponential stability in p (p2)-moment of mild solution for impulsive stochastic partial differential equation with delays are obtained. The results in T. Caraballo and K. Liu [Stochastic Anal. Appl. 17, No. 5, 743–763 (1999; Zbl 0943.60050)] and J. Luo [J. Math. Anal. Appl. 342, 753–760 (2008; Zbl 1157.60065)] are generalized and improved.

MSC:
93E03General theory of stochastic systems
60H15Stochastic partial differential equations
60H15Stochastic partial differential equations
93E15Stochastic stability
References:
[1]Appleby, J.A.D., 2008. Fixed points, stability and harmless stochastic perturbations. Preprint
[2]Barbu, D.; Bocsan, G.: Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients, Czech math. J. 52, 87-95 (2002) · Zbl 1001.60068 · doi:10.1023/A:1021723421437
[3]Burton, T. A.: Stability by fixed point theory for functional differential equations, (2006)
[4]Caraballo, T.; Liu, K.: Exponential stability of mild solutions of stochastic partial differential equations with delays, Stoch. anal. Appl. 17, 743-763 (1999) · Zbl 0943.60050 · doi:10.1080/07362999908809633
[5]Caraballo, T.; Liu, K.: On exponential stability criteria of stochastic partial differential equations, Stoch. proc. Appl. 83, 289-301 (1999)
[6]Caraballo, T.; Liu, K.; Truman, A.: Stochastic functional partial differential equations: existence, uniqueness and asymptotic delay property, Proc. R. Soc. lond. Ser. A math. Phys. eng. Sci. 456, 1775-1982 (2000)
[7]Govindan, T. E.: Existence and stability of solutions of stochastic semilinear functional differential equations, Stoch. anal. Appl. 20, 1257-1280 (2002)
[8]Govindan, T. E.: Stability of mild solutions of stochastic evolution equations with variable delay, Stoch. anal. Appl. 5, 1059-1077 (2003)
[9]Ichikawa, A.: Stability of semilinear stochastic evolution equation, J. math. Anal. appl. 90, 12-44 (1982) · Zbl 0497.93055 · doi:10.1016/0022-247X(82)90041-5
[10]Ichikawa, A.: Absolute stability of a stochastic evolution equation, Stochastics 11, 143-158 (1983) · Zbl 0531.93065 · doi:10.1080/17442508308833282
[11]Liu, K.: Lyapunov functional and asymptotic stability of stochastic delay evolution equations, Stoch. stoch. Rep. 63, 1-26 (1998) · Zbl 0947.93037
[12]Liu, K.: Stability of infinite dimensional stochastic differential equations with applications, (2006)
[13]Liu, K.; Mao, X.: Exponential stability of non-linear stochastic evolution equations, Stoch. proc. Appl. 78, 173-193 (1998) · Zbl 0933.60072 · doi:10.1016/S0304-4149(98)00048-9
[14]Liu, K., Shi, Y., 2006. Razuminkhin-type theorems of infinite dimensional stochastic functional differential equations. In: IFIP, System, Control, Modeling and Optimization, pp. 237–247 · Zbl 1217.60055 · doi:10.1007/0-387-33882-9_22
[15]Liu, K.; Truman, A.: A note on almost sure exponential stability for stochastic partial functional differential equations, Statist. probab. Lett. 50, 273-278 (2000) · Zbl 0966.60059 · doi:10.1016/S0167-7152(00)00103-6
[16]Luo, J.: Fixed points and stability of neutral stochastic delay differential equations, J. math. Anal. appl. 334, 431-440 (2007) · Zbl 1160.60020 · doi:10.1016/j.jmaa.2006.12.058
[17]Luo, J.: Stability of stochastic partial differential equations with infinite delays, J. comput. Appl. math. 222, 364-371 (2008) · Zbl 1151.60336 · doi:10.1016/j.cam.2007.11.002
[18]Luo, J.: Fixed points and exponential stability of mild solutions of stochastic partial differential equation with delays, J. math. Anal. appl. 342, 753-760 (2008) · Zbl 1157.60065 · doi:10.1016/j.jmaa.2007.11.019
[19]Pazy, A.: Semigroups of linear operator and applications to partial differential equations, (1983)
[20]Da Prato, G.; Zabczyk, J.: Stochastic equations in infinite dimensions, (1992) · Zbl 0761.60052
[21]Sakthivel, R.; Luo, J.: Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. math. Anal. appl. 356, 1-6 (2009) · Zbl 1166.60037 · doi:10.1016/j.jmaa.2009.02.002
[22]Sakthivel, R.; Luo, J.: Asymtotic stability of impulsive stochastic partial differential equations, Statist. probab. Lett. 79, 1219-1223 (2009) · Zbl 1166.60316 · doi:10.1016/j.spl.2009.01.011
[23]Samoilenko, A. M.; Perestynk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[24]Taniguchi, T.: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert space, Stoch. stoch. Rep. 53, 41-52 (1995) · Zbl 0854.60051
[25]Taniguchi, T.: Almost sure exponential stability for stochastic partial functional differential equations, Stoch. anal. Appl. 16, 965-975 (1998) · Zbl 0911.60054 · doi:10.1080/07362999808809573
[26]Taniguchi, T.: The exponential stability for stochastic delay partial differential equations, J. math. Anal. appl. 331, 191-205 (2007) · Zbl 1125.60063 · doi:10.1016/j.jmaa.2006.08.055
[27]Taniguchi, T.; Liu, K.; Truman, A.: Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert spaces, J. differential equations 181, 72-91 (2002) · Zbl 1009.34074 · doi:10.1006/jdeq.2001.4073
[28]Wan, L.; Duan, J.: Exponential stability of non-autonomous stochastic partial differential equations with finite memory, Statist. probab. Lett. 78, 490-498 (2008) · Zbl 1141.37030 · doi:10.1016/j.spl.2007.08.003