zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. (English) Zbl 1178.37112
Summary: The authors investigate the long-term dynamics of the three-dimensional Navier-Stokes-Voight model of viscoelastic incompressible fluid. Specifically, upper bounds for the number of determining modes are derived for the 3D Navier-Stokes-Voight equations and for the dimension of a global attractor of a semigroup generated by these equations. Viewed from the numerical analysis point of view the authors consider the Navier-Stokes-Voight model as a non-viscous (inviscid) regularization of the three-dimensional Navier-Stokes equations. Furthermore, it is also shown that the weak solutions of the Navier-Stokes-Voight equations converge, in the appropriate norm, to the weak solutions of the inviscid simplified Bardina model, as the viscosity coefficient ν0.
MSC:
37L30Attractors and their dimensions, Lyapunov exponents
35Q35PDEs in connection with fluid mechanics
35Q30Stokes and Navier-Stokes equations
35B40Asymptotic behavior of solutions of PDE
References:
[1]Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.
[2]Babin, A. V. and Vishik, M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
[3]Bardina, J., Ferziger, J. H. and Reynolds, W. C., Improved subgrid scale models for large eddy simulation, 13th AIAA Fluid and Plasma Dynamics Conference, 1980, 80–1357.
[4]Berselli, L. C., Iliescu, T. and Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, Springer-Verlag, New York, 2006.
[5]Cao, Y. P., Lunasin, E. M. and Titi, E. S., Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4(4), 2006, 823–848.
[6]Çelebi, A. O., Kalantarov, V. K. and Polat, M., Attractors for the generalized Benjamin-Bona-Mahony equation, J. Diff. Eqs., 157(2), 1999, 439–451. · Zbl 0934.35151 · doi:10.1006/jdeq.1999.3634
[7]Chueshov, I. D., Theory of functionals that uniquely determine the asymptotic dynamics of infinitedimensional dissipative systems, Russ. Math. Sur., 53(4), 1998, 731–776. · doi:10.1070/RM1998v053n04ABEH000057
[8]Cockburn, B., Jones D. A. and Titi, E. S., Determining degrees of freedom for nonlinear dissipative equations, CR Acad. Sci. Paris, 321(5), 1995, 563–568.
[9]Cockburn, B., Jones D. A. and Titi, E. S., Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp., 66, 1997, 1073–1087. · Zbl 0866.35091 · doi:10.1090/S0025-5718-97-00850-8
[10]Constantin, P., Doering C. R. and Titi, E. S., Rigorous estimates of small scales in turbulent flows, J. Math. Phys., 37, 1996, 6152–6156. · Zbl 0862.35083 · doi:10.1063/1.531769
[11]Constantin, P. and Foias, C., Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1988.
[12]Constantin, P., Foias, C., Manley, O. P., et al, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech., 150, 1985, 427–440. · Zbl 0607.76054 · doi:10.1017/S0022112085000209
[13]Constantin, P., Foias, C., Nicolaenko, B., et al, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Appl. Math. Sci., 70, Springer-Verlag, New York, 1989.
[14]Constantin, P., Foias, C. and Temam, R., Attractors representing turbulent flows, Mem. Amer. Math. Soc., 53(314), 1985, 1–67.
[15]Foias, C., Manley, O., Rosa, R., et al, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.
[16]Foias, C., Manley, O. P., Temam, R., et al, Asymptotic analysis of the Navier-Stokes equations, Phys. D, 9(1–2), 1983, 157–188. · Zbl 0584.35007 · doi:10.1016/0167-2789(83)90297-X
[17]Foias, C. and Prodi, G., Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39, 1967, 1–34.
[18]Foias, C. and Titi, E. S., Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4, 1991, 135–153. · Zbl 0714.34078 · doi:10.1088/0951-7715/4/1/009
[19]Hale, J. K., Asymptotic Behavior of Dissipative Systems, Math. Sur. Monographs, Vol. 25, A. M. S., Providence, RI, 1988.
[20]Holst, M. J. and Titi, E. S., Determining projections and functionals for weak solutions of the Navier-Stokes equations, Recent Developments in Optimization Theory and Nonlinear Analysis, Y. Censor and S. Reich (eds.), Contemp. Math., Vol. 204, A. M. S., Providence, RI, 1997, 125–138.
[21]Ilyin, A. A., Attractors for Navier-Stokes equations in domains with finite measure, Nonlinear Anal., 27, 1996, 605–616. · Zbl 0859.35090 · doi:10.1016/0362-546X(95)00112-9
[22]Ilyin, A. A. and Titi, E. S., Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier-Stokes equations, J. Nonlinear Sci., 16(3), 2006, 233–253. · Zbl 1106.35049 · doi:10.1007/s00332-005-0720-7
[23]Jones, D. A. and Titi, E. S., Determining finite volume elements for the 2D Navier-Stokes equations, Phys. D, 60, 1992, 165–174. · Zbl 0778.35084 · doi:10.1016/0167-2789(92)90233-D
[24]Jones, D. A. and Titi, E. S., Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42, 1993, 875–887. · Zbl 0796.35128 · doi:10.1512/iumj.1993.42.42039
[25]Kalantarov, V. K., Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. LOMI, 152, 1986, 50–54.
[26]Kalantarov, V. K., Global behavior of solutions of nonlinear equations of mathematical physics of classical and non-classical type, Postdoctoral Thesis, St. Petersburg, 1988.
[27]Kalantarov, V. K., Levant, B. and Titi, E. S., Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19, 2009, 133–152. · Zbl 1177.35152 · doi:10.1007/s00332-008-9029-7
[28]Karazeeva, N. A., Kotsiolis, A. A. and Oskolkov, A. P., Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids, Proc. Steklov Inst. Math., 3, 1991, 73–108.
[29]Khouider, B. and Titi, E. S., An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61, 2008, 1331–1346. · Zbl 1149.35018 · doi:10.1002/cpa.20218
[30]Henshaw, W. D., Kreiss, H. O. and Yström, J., Numerical experiments on the interaction between the large and small-scale motions of the Navier-Stokes equations, Multiscale Model. Simul., 1, 2003, 119–149. · Zbl 1146.76590 · doi:10.1137/S1540345902406240
[31]Ladyzhenskaya, O. A., On the dynamical system generated by the Navier-Stokes equations, Zap. Nauchn. Sem. LOMI, 27, 1972, 91–114.
[32]Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, 1963.
[33]Ladyzhenskaya, O. A., Attractors for Semigroups and Evolution Equations, Lezioni Lincee, Cambridge University Press, Cambridge, 1991.
[34]Ladyzhenskaya, O. A., Solonnikov, V. A. and Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967.
[35]Larios, A. and Titi, E. S., On the high-order global regularity of the three-dimensional inviscid α-regularization of various hydrodynmaic models, preprint.
[36]Layton, R. and Lewandowski, R., On a well-posed turbulence model, Discrete Continuous Dyn. Sys. B, 6, 2006, 111–128.
[37]Levant, B., Ramos, F. and Titi, E. S., On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 7, 2009, in press.
[38]Moise, I., Rosa, R. and Wang, X. M., Attractors for non-compact semigroups via energy equations, Non-linearity, 11(5), 1998, 1369–1393.
[39]Olson, E. and Titi, E. S., Determining modes for continuous data assimilation in 2D turbulence, J. Stat. Phys., 113(5–6), 2003, 799–840. · Zbl 1137.76402 · doi:10.1023/A:1027312703252
[40]Olson, E. and Titi, E. S., Determining modes and Grashof number in 2D turbulence – A numerical case study, 2007, preprint.
[41]Oskolkov, A. P., The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. LOMI, 38, 1973, 98–136.
[42]Oskolkov, A. P., A certain nonstationary quasilinear system with a small parameter, that regularizes the system of Navier-Stokes equations, Problems of Mathematical Analysis, No. 4: Integral and Differential Operators. Differential Equations, St. Petersburg University, St. Petersburg, 143, 1973, 78–87.
[43]Oskolkov, A. P., On the theory of Voight fluids, Zap. Nauchn. Sem. LOMI, 96, 1980, 233–236.
[44]Ramos, F. and Titi, E. S., Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, preprint.
[45]Robinson, J., Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.
[46]Stanislavova, M., Stefanov, A. and Wang, B. X., Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on 3, J. Diff. Eqs., 219(2), 2005, 451–483. · Zbl 1160.35354 · doi:10.1016/j.jde.2005.08.004
[47]Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.
[48]Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Third Revised Edition, North-Holland, Amsterdam, 2001.
[49]Wang, B. X. and Yang, W. L., Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A, 30(13), 1997, 4877–4885. · Zbl 0924.35139 · doi:10.1088/0305-4470/30/13/035