zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global attraction and stability for Cohen–Grossberg neural networks with delays. (English) Zbl 1178.68437
Summary: We consider a class of Cohen–Grossberg neural networks with delays. We prove the existence and global asymptotic stability of an equilibrium point and estimate the region of existence. Furthermore, we show that the trajectories of the neural networks with positive initial data will stay in the positive region if the amplification function satisfies a divergent condition. We also establish the existence of a globally attracting compact set for more general networks. We estimate this compact set explicitly in terms of the network parameters from physiological and biological models. Our results can be applied to neural networks with a wide range of activation functions which are neither bounded nor globally Lipschitz continuous such as the Lotka–Volterra model. We also give some examples and simulations.
68T05Learning and adaptive systems