zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy hyperrings. (English) Zbl 1179.16029
Summary: We introduce and analyze the fuzzy hyperring notion. We consider and study the subfuzzy-structures of such a notion and homomorphisms between fuzzy hyperrings. Finally, fundamental relations on fuzzy hyperrings are analyzed. In all the paper, we follow a connection between hyperrings and fuzzy hyperrings.
16Y99Generalizations of associative rings and algebras
20N20Hypergroups (group theory)
08A72Fuzzy algebraic structures
[1]Ameri, R.; Zahedi, M. M.: Fuzzy subhypermodules over fuzzy hyperrings, , 1-14 (1996) · Zbl 0883.16037
[2]Ameri, R.; Zahedi, M. M.: Hypergroup and join spaces induced by a fuzzy subset, Pure math. Appl. 8, 155-168 (1997) · Zbl 0905.20050
[3]Corsini, P.: Prolegomena of hypergroup theory, (1993) · Zbl 0785.20032
[4]Corsini, P.: Join spaces, power sets, fuzzy sets, , 45-52 (1994) · Zbl 0847.20065
[5]Corsini, P.: Fuzzy sets, join spaces and factor spaces, Pure math. Appl. 11, No. 3, 439-446 (2000) · Zbl 0980.20071
[6]Corsini, P.; Leoreanu, V.: Applications of hyperstructure theory, Advances in mathematics 5 (2003) · Zbl 1027.20051
[7]Corsini, P.; Leoreanu, V.: Fuzzy sets and join spaces associated with rough sets, Rendiconti di circolo matematico di Palermo 51, 527-536 (2002) · Zbl 1176.03035 · doi:10.1007/BF02871859
[8]Corsini, P.; Leoreanu, V.: Join spaces associated with fuzzy sets, J. combinatorics inf. Syst. sci. 20, No. 1 – 4, 293-303 (1995) · Zbl 0887.20045
[9]Corsini, P.; Tofan, I.: On fuzzy hypergroups, Pure math. Appl. 8, 29-37 (1997) · Zbl 0906.20049
[10]Davvaz, B.: Fuzzy hv-groups, Fuzzy sets syst. 101, 191-195 (1999) · Zbl 0935.20065 · doi:10.1016/S0165-0114(97)00071-7
[11]Davvaz, B.: Fuzzy hv submodules, Fuzzy sets syst. 117, 477-484 (2001) · Zbl 0974.16041 · doi:10.1016/S0165-0114(98)00366-2
[12]Davvaz, B.; Corsini, P.: Generalized fuzzy sub-hyperquasigroups of hyperquasigroups, Soft comput. 10, No. 11, 1109-1114 (2006) · Zbl 1106.20055 · doi:10.1007/s00500-006-0048-8
[13]Kaburlasos, V. G.; Petridis, V.: Fuzzy lattice neurocomputing (FLN) models, Neural networks 13, 1145-1170 (2000)
[14]Kehagias, Ath.: L-fuzzy join and meet hyperoperations and the associated L-fuzzy hyperalgebras, Rendiconti di circolo matematico di Palermo 51, 503-526 (2002)
[15]Kehagias, Ath.: An example of L-fuzzy join space, Rendiconti di circolo matematico di Palermo 52, 322-350 (2003)
[16]Leoreanu, V.: Direct limit and inverse limit of join spaces associated with fuzzy sets, Pure math. Appl. 11, 509-512 (2000) · Zbl 0980.20076
[17]V. Leoreanu, About hyperstructures associated with fuzzy sets of type 2, Ital. J. Pure Appl. Math. 17 (2005) 127 – 136. · Zbl 1150.20320
[18]V. Leoreanu-Fotea, B. Davvaz, Join n-spaces and lattices, Multiple Valued Logic Soft Comput. 15 (2008), accepted for publication.
[19]Leoreanu-Fotea, V.; Davvaz, B.: N-hypergroups and binary relations, Eur. J. Combinatorics 29, 1207-1218 (2008) · Zbl 1179.20070 · doi:10.1016/j.ejc.2007.06.025
[20]F. Marty, Sur une généralisation de la notion de group, in: 4th Congress Math. Scandinaves, Stockholm, 1934, pp. 45 – 49. · Zbl 61.1014.03
[21]Mordeson, J. N.; Malik, M. S.: Fuzzy commutative algebra, (1998)
[22]Petridis, V.; Kaburlasos, V. G.: Fuzzy lattice neural network (FLNN): a hybrid model for learning, IEEE trans. Neural networks 9, 877-890 (1998)
[23]Petridis, V.; Kaburlasos, V. G.: Learning in the framework of fuzzy lattices, IEEE trans. Fuzzy syst. 7, 422-440 (1999)
[24]Prenowitz, W.; Jantosciak, J.: Join geometries, (1979)
[25]Rosenfeld, A.: Fuzzy groups, J. math. Anal. appl. 35, 512-517 (1971) · Zbl 0194.05501 · doi:10.1016/0022-247X(71)90199-5
[26]M.K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft Comput. (2007), doi: http://10.1007/s00500-007-0257-9.
[27]Serafimidis, K.; Kehagias, A.; Konstantinidou, M.: The L-fuzzy corsini join hyperoperation, Ital. J. Pure appl. Math. 12, 83-90 (2002) · Zbl 1138.20323
[28]Vougiouklis, T.: Hyperstructures and their representations, (1994) · Zbl 0828.20076
[29]Zahedi, M. M.; Ameri, R.: On the prime, primary and maximal subhypermodules, Ital. J. Pure appl. Math. 5, 61-80 (1999) · Zbl 0954.16034
[30]Zahedi, M. M.; Bolurian, M.; Hasankhani, A.: On polygroups and fuzzy subpolygroups, J. fuzzy math. 3, 1-15 (1995) · Zbl 0854.20073