zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new algorithm for calculating two-dimensional differential transform of nonlinear functions. (English) Zbl 1179.65121
Summary: A new algorithm for calculating the two-dimensional differential transform of nonlinear functions is developed. This new technique is illustrated by studying suitable forms of nonlinearity. Three strongly nonlinear partial differential equations are then solved by the differential transform method to demonstrate the validity and applicability of the proposed algorithm. The present framework offers a computationally easier approach to compute the transformed function for all forms of nonlinearity. This gives the technique much wider applicability.
MSC:
65M22Solution of discretized equations (IVP of PDE)
35F25Initial value problems for first order nonlinear PDE
35G25Initial value problems for nonlinear higher-order PDE
References:
[1]Zhou, J. K.: Differential transformation and its applications for electrical circuits, (1986)
[2]Chen, C. L.; Lin, S. H.; Chen, C. K.: Application of Taylor transformation to nonlinear predictive control problem, Appl. math. Model. 20, 699-710 (1996) · Zbl 0860.93008 · doi:10.1016/0307-904X(96)00050-9
[3]Chiou, J. S.; Tzeng, J. R.: Application of the Taylor transform to nonlinear vibration problems, ASME J. Vib. acoust. 118, 83-87 (1996)
[4]Jang, M. J.; Chen, C. L.: Analysis of the response of a strongly nonlinear damped system using a differential transformation technique, Appl. math. Comput. 88, 137-151 (1997) · Zbl 0911.65067 · doi:10.1016/S0096-3003(96)00308-6
[5]Chen, C. L.; Liu, Y. C.: Differential transformation technique for steady nonlinear heat conduction problems, Appl. math. Comput. 95, 155-164 (1998) · Zbl 0943.65082 · doi:10.1016/S0096-3003(97)10096-0
[6]Yu, L. T.; Chen, C. K.: The solution of the Blasius equation by the differential transformation method, Math. comput. Model. 28, 101-111 (1998) · Zbl 1076.34501 · doi:10.1016/S0895-7177(98)00085-5
[7]Yu, L. T.; Chen, C. K.: Application of Taylor transformation to optimize rectangular fins with variable thermal parameters, Appl. math. Model. 22, 11-21 (1998) · Zbl 0906.73010 · doi:10.1016/S0307-904X(98)00004-3
[8]Kuo, B. L.: Application of the differential transformation method to the solutions of Falkner – Skan wedge flow, Acta mech. 164, 161-174 (2003) · Zbl 1064.76034 · doi:10.1007/s00707-003-0019-4
[9]Kuo, B. L.: Thermal boundary-layer problems in a semi-infinite plate by the differential transformation method, Appl. math. Comput. 150, 303-320 (2004) · Zbl 1059.76061 · doi:10.1016/S0096-3003(03)00233-9
[10]Chen, C. K.; Chen, S. S.: Application of the differential transformation method to a nonlinear conservative system, Appl. math. Comput. 154, 431-441 (2004) · Zbl 1134.65353 · doi:10.1016/S0096-3003(03)00723-9
[11]Chen, C. K.; Ho, S. H.: Solving partial differential equations by two-dimensional differential transform, Appl. math. Comput. 106, 171-179 (1999) · Zbl 1028.35008 · doi:10.1016/S0096-3003(98)10115-7
[12]Jang, M. J.; Chen, C. L.; Liu, Y. C.: Two-dimensional differential transform for partial differential equations, Appl. math. Comput. 121, 261-270 (2001) · Zbl 1024.65093 · doi:10.1016/S0096-3003(99)00293-3
[13]Ayaz, F.: On the two-dimensional differential transformation method, Appl. math. Comput. 143, 361-374 (2003) · Zbl 1023.35005 · doi:10.1016/S0096-3003(02)00368-5
[14]Chang, S. H.; Chang, I. L.: A new algorithm for calculating the one-dimensional differential transform of nonlinear functions, Appl. math. Comput. 195, 799-808 (2008) · Zbl 1132.65062 · doi:10.1016/j.amc.2007.05.026