zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust delay-dependent guaranteed cost controller design for uncertain neutral systems. (English) Zbl 1179.93088
Summary: A novel robust delay-dependent guaranteed cost controller is introduced for a class of uncertain nonlinear neutral systems with both norm-bounded uncertainties and nonlinear parameter perturbations. A neutral memory state-feedback control law is chosen such that a quadratic cost function is minimized. On the basis of a descriptor type model transformation, an augmented descriptor form Lyapunov-Krasovskii functional is proposed in order to derive a Linear Matrix Inequality (LMI) condition of the synthesis of a robust stabilizing guaranteed cost controller for uncertain nonlinear neutral systems. The descriptor approach is applied for both the delay-differential equation and the neutral difference operator allowing to introduce several additional free weighting matrices in order to obtain further relaxation in the synthesis process. The proposed method of introducing some relaxation into design problem also leads to develop LMI conditions which can be easily solved using interior point algorithms. Two numerical examples have been introduced to show the application of the theoretical results which indicate that the proposed approach improves the guaranteed cost performance.
MSC:
93B52Feedback control
15A39Linear inequalities of matrices
93D21Adaptive or robust stabilization
93C73Perturbations in control systems
References:
[1]Kolmanovskii, V. B.; Nosov, V. R.: Stability of functional differential equations, Mathematics in science and engineering 180 (1986) · Zbl 0593.34070
[2]Hale, J.; Lunel, S. V.: Introduction to functional differential equations, (1993)
[3]Gu, K.; Kharitonov, V. L.; Chen, J.: Stability of time-delay systems, (2003)
[4]Esfehani, S. H.; Moheimani, S. O. R.; Petersen, I. R.: LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems, IEE Proceedings – control theory and applications 145, No. 6, 491-498 (1998)
[5]Yu, L.; Chu, J.: An LMI approach to guaranteed cost control of linear uncertain time-delay systems, Automatica 35, No. 6, 1155-1159 (1999) · Zbl 1041.93530 · doi:10.1016/S0005-1098(99)00007-2
[6]Xu, S. Y.; Lam, J.; Yang, C. W.; Verriest, E. I.: An LMI approach to guaranteed cost control for uncertain linear neutral delay systems, International journal of robust and nonlinear control 13, No. 1, 35-53 (2003) · Zbl 1011.93063 · doi:10.1002/rnc.699
[7]Nian, X.; Feng, J.: Guaranteed cost control of a linear uncertain system with multiple time-varying delays: an LMI approach, IEE Proceedings – control theory and applications 150, No. 1, 17-22 (2003)
[8]Kwon, O.; Won, S.; Yue, D.: Delayed feedback guaranteed cost controller design for uncertain time-delay systems, IEICE transactions on fundamentals of electronics communications and computer sciences 86A, No. 9, 2413-2418 (2003)
[9]Park, Ju H.: Guaranteed cost control for uncertain large scale systems with time-delays via delayed feedback, Chaos, solitons & fractals 27, No. 3, 800-812 (2006) · Zbl 1094.93020 · doi:10.1016/j.chaos.2005.04.053
[10]Park, Ju H.: Delay-dependent guaranteed cost stabilization criterion for neutral delay-differential systems:matrix inequality approach, Computers & mathematics with applications 47, No. 10 – 11, 1507-1515 (2004) · Zbl 1070.34106 · doi:10.1016/j.camwa.2004.06.003
[11]Chen, B.; Lam, J.; Xu, S.: New observer-based cost control for neutral delay systems, Proceedings of the institution of mechanical engineers part I – journal of systems and control engineering 218, No. 13, 227-235 (2004)
[12]Park, J. H.: Delay-dependent criterion for guaranteed cost control of neutral delay systems, Journal of optimization theory and applications 124, No. 2, 491-502 (2005) · Zbl 1070.93039 · doi:10.1007/s10957-004-0947-8
[13]Park, J. H.; Kwon, O.: On guaranteed cost control of neutral systems by retarded integral state-feedback, Applied mathematics and computation 165, No. 2, 393-404 (2005) · Zbl 1075.93012 · doi:10.1016/j.amc.2004.06.019
[14]Lien, C. H.: Guaranteed cost observer-based controls for a class of uncertain neutral time-delays, Journal of optimization theory and applications 126, No. 1, 137-156 (2005) · Zbl 1085.93010 · doi:10.1007/s10957-005-2665-2
[15]Chen, B.; Liu, X. P.: Fuzzy guaranteed cost control of nonlinear neutral delay systems with parameter uncertainty, Dynamics of continuous discrete and impulsive systems – series B – applications 12, 381-396 (2005)
[16]Zhang, D. M.; Yu, L.: Delay-dependent guaranteed cost control for generalized uncertain neural systems, Dynamics of continuous discrete and impulsive systems – series A – mathematical analysis 13, 974-982 (2006)
[17]Chen, B.; Lam, J.; Xu, S. Y.: Memory state-feedback guaranteed cost control for neutral delay systems, International journal of innovative computing information and control 2, No. 2, 293-303 (2006)
[18]Kwon, O. M.; Park, Ju H.: Guaranteed cost control for uncertain large scale systems with time-delays via delayed feedback, Chaos, solitons & fractals 27, No. 3, 800-812 (2006) · Zbl 1094.93020 · doi:10.1016/j.chaos.2005.04.053
[19]Lien, C. H.: Delay-dependent and delay-independent guaranteed cost control for uncertain neutral systems with time-varying delays via LMI approach, Chaos, solitons and fractals 33, No. 3, 1017-1027 (2007) · Zbl 1136.93034 · doi:10.1016/j.chaos.2006.01.066
[20]Fridman, E.; Shaked, U.: An improved stabilization method for linear time-delay systems, IEEE transactions on automatic control 47, No. 11, 1931-1937 (2002)
[21]He, Y.; Wu, M.; Shi, J. -H.; Liu, G. -P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Systems and control letters 51, 57-65 (2004) · Zbl 1157.93467 · doi:10.1016/S0167-6911(03)00207-X
[22]Parlakçı, M. N. A.: Robust stability of uncertain time-varying state-delayed systems, IEE Proceedings – control theory and applications 153, No. 4, 469-477 (2006)
[23]S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, 1994.