zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quantized output feedback control for networked control systems. (English) Zbl 1179.93096
Summary: This paper addresses the problem of output feedback control for Networked Control Systems (NCSs) with limited communication capacity. Firstly, we propose a new model to describe the non-ideal network conditions and the input/output state quantization of the NCSs in a unified framework. Secondly, based on our newly proposed model and an improved separation lemma, an observer-based controller is developed for the asymptotical stabilization of the NCSs, which are shown in terms of nonlinear matrices inequalities. The nonlinear problems can be computed through solving a convex optimization problems, and the observed and controller gains could be derived by solving a set of linear matrix inequalities. Thirdly, two simulation examples are given to demonstrate the effectiveness of the proposed method.
93B52Feedback control
93C10Nonlinear control systems
15A39Linear inequalities of matrices
93A14Decentralized systems
[1]Brockett, R. W.; Liberzon, D.: Quantized feedback stabilization of linear systems, IEEE transactions on automatic control 45, 1279-1289 (2000) · Zbl 0988.93069 · doi:10.1109/9.867021
[2]Delvenne, J. C.: An optimal quantized feedback strategy for scalar linear systems, IEEE transactions on automatic control 51, 298-303 (2006)
[3]El Ghaoui, L.; Oustry, F.; Aitrami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems, IEEE transactions on automatic control 42, 1171-1176 (1997) · Zbl 0887.93017 · doi:10.1109/9.618250
[4]Fu, M.; Xie, L.: The sector bound approach to quantized feedback control, IEEE transactions on automatic control 50, 1698-1710 (2005)
[5]He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE transactions on automatic control 49, 828-832 (2004)
[6]Hua, C.; Li, F.; Guan, X. P.: Observer-based adaptive control for uncertain time-delay systems, Information sciences 176, 201-214 (2006) · Zbl 1121.93034 · doi:10.1016/j.ins.2004.08.003
[7]Hua, H. N.; Cai, K. Y.: Robust fuzzy control for uncertain discrete-time nonlinear Markovian jump systems without mode observations, Information sciences 177, 1509-1522 (2007) · Zbl 1120.93337 · doi:10.1016/j.ins.2006.07.031
[8]Ishii, H.; Basar, T.: Remote control of LTI systems over networks with state quantization, Systems and control letters 54, 15-31 (2005) · Zbl 1129.93444 · doi:10.1016/j.sysconle.2004.06.002
[9]Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals, Automatica 39, 1543-1554 (2003) · Zbl 1030.93042 · doi:10.1016/S0005-1098(03)00151-1
[10]G.P. Liu, Y. Xia, D. Rees, Predictive control of networked systems with random delays, in: Proc. the 16th IFAC World Congress, Prague, 2005.
[11]Mahmoud, M. S.; Shi, P.; Yi, J. Q.; Pan, J. S.: Robust observers for neutral jumping systems with uncertain information, Information sciences 176, 2355-2385 (2006) · Zbl 1116.93051 · doi:10.1016/j.ins.2005.07.016
[12]Montestruque, L.; Antsaklis, P. J.: Stability of model-based networked control systems with time-varying transmission times, IEEE transactions on automatic control 49, 1562-1572 (2004)
[13]Montestruque, L.; Antsaklis, P. J.: Static and dynamic quantization in model-based networked control systems, International journal of control 80, 87-101 (2007) · Zbl 1112.68006 · doi:10.1080/00207170600931663
[14]Moon, Y. C.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delays system, International journal of control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[15]S. Mu, T. Chu, L. Wang, Impulsive control of discrete-time networked systems with communication delays, in: Proc. of the 16th IFAC World Congress, The Prague, Czech Republic, 2005.
[16]Peng, C.; Tian, Y. -C.: Networked H control of linear systems with state quantization, Information sciences 177, 5763-5774 (2007) · Zbl 1126.93338 · doi:10.1016/j.ins.2007.05.025
[17]Tian, E.; Yue, D.; Zhao, X.: Quantised control design for networked control systems, IET control theory application 1, 1693-1699 (2007)
[18]Tian, Y. C.; Yu, Z. G.; Frdge, C.: Multifractal nature of network induced time delay in networked control systems, Physics letters A 361, 103-107 (2007) · Zbl 1170.68318 · doi:10.1016/j.physleta.2006.09.046
[19]Tseng, C. S.; Hwang, C. K.: Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances, Fuzzy sets and systems 158, 164-179 (2007) · Zbl 1110.93032 · doi:10.1016/j.fss.2006.09.014
[20]Walsh, G. C.; Ye, H.; Bushnell, L. G.: Stability analysis of networked control systems, IEEE transactions on control systems technology 10, 438-446 (2002)
[21]Yang, F.; Wang, Z.; Hung, Y. S.; Gani, M.: H control for networked systems with random communication delays, IEEE transactions on automatic control 51, 511-518 (2006)
[22]Yue, D.; Han, Q. -L.: Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity and Markovian switching, IEEE transactions on automatic control 50, 217-222 (2005)
[23]Yue, D.; Han, Q. -L.; Chen, P.: State feedback controller design of networked control systems, IEEE transactions on circuits and systems – II 51, 640-644 (2004)
[24]Yue, D.; Han, Q. -L.; Lam, J.: Network-based robust H control with systems with uncertainty, Automatica 41, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[25]Yue, D.; Peng, C.; Tang, G. Y.: Guaranteed cost control of linear systems over networks with state and input quantizations, IEE Proceedings: control theory and applications 153, No. 6, 658-664 (2006)
[26]G. Zhai, Y.C. Mi, J. Imae, T. Kobayashi, Design of Hnbsp; control systems with quantized signals, in: Proc. the 16th IFAC World Congress, Prague, 2005.
[27]Zhang, W.; Branicky, M. S.; Phillips, S. M.: Stability of networked control systems, IEEE control systems magazine 21, 84-99 (2001)