zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity. (English) Zbl 1180.30039

In this paper, shared value problems are studied for a meromorphic function f(z) in the plane and its shift f(z+c), where c. Among the others, the authors show in Theorem 2 that if f(z) is of finite order and shares two values CM (counting multiplicities) and one value IM (ignoring multiplicities) with its shift f(z+c), then f(z)f(z+c), that is, f should be a periodic function with period c. The three values can be also taken as c-periodic functions small with respect to the function f. As a new criterion for elliptic functions, their Theorem 10 gives the condition that f shares three values “2CM+1IM” with two shifts in different directions. This is a direct application of Theorem 2. Those theorems improve some of the results given in a recent paper due to the first four authors [Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ., in press] where all the shared values are considered mainly together with multiplicity, that is, under CM.

Moreover, under the assumptions that f(z) is a meromorphic function of order less than 2 and that f(z) and its shift share both a value a and CM, their Theorem 1 confirms a shifted analogue of a well-known conjecture by R. Brück [Result. Math. 30, 21–24 (1996; Zbl 0861.30032)] concerning the value sharing of an entire function f(z) with its derivative f ' (z). The authors remark with an entire function of order 2 that this order restriction cannot be relaxed any further.

The main tools of this research are different analogons of important results in the classical Nevanlinna theory such as the lemma on the logarithmic derivative and the second main theorems. These are obtained by R. Halburd and R. Korhonen [Ann. Acad. Sci. Fenn., Math. 31, No. 2, 463–478 (2006; Zbl 1108.30022), J. Math. Anal. Appl. 314, No. 2, 477–487 (2006; Zbl 1085.30026), Proc. Lond. Math. Soc. (3) 94, No. 2, 443–474 (2007; Zbl 1119.39014)], and also independently by Y.-M. Chiang and S.-J. Feng [Ramanujan J. 16, No. 1, 105–129 (2008; Zbl 1152.30024)], all of which are valid for meromorphic functions of finite order. The authors merge them skillfully with some results in uniqueness theory of meromorphic functions such as those by [G. Brosch, Eindeutigkeitssätze für meromorphe Funktionen. (Uniqueness theorems for meromorphic functions). Aachen: RWTH Aachen, Math.-Naturwiss. Fak., Diss. 77 S. (1989; Zbl 0694.30027)] or by G. Jank and N. Terglane [Math. Pannonica 2, No. 2, 37–46 (1991; Zbl 0747.30022)].

The authors offer also some more alternative improvements of their previous theorems.

30D35Distribution of values (one complex variable); Nevanlinna theory