zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Instability induced by cross-diffusion in reaction-diffusion systems. (English) Zbl 1180.35098
Summary: The instability of the uniform equilibrium of a general strongly coupled reaction-diffusion is discussed. In an unbounded and a bounded domain, sufficient conditions for instability are obtained, respectively. The conclusion is applied to the ecosystem, it is shown that cross-diffusion can induce the instability of an equilibrium which is stable for the kinetic system and for the self-diffusion-reaction system.
35B35Stability of solutions of PDE
35K57Reaction-diffusion equations
35K45Systems of second-order parabolic equations, initial value problems
[1]Murray, J. D.: Mathematical biology, (2002)
[2]Pao, C. V.; Ruan, W. H.: Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions, J. math. Anal. appl. 333, 472-499 (2007) · Zbl 1120.35049 · doi:10.1016/j.jmaa.2006.10.005
[3]Keller, E. F.; Segel, L. A.: Initiation of slime mold aggregation viewed as an instability, J. theoret. Biol. 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[4]Keller, E. F.; Segel, L. A.: Model for chemotaxis, J. theoret. Biol. 30, 225-234 (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[5]Shigesada, N.; Kawasaki, K.; Teramoto, E.: Spatial segregation of interacting species, J. theoret. Biol. 79, No. 1, 83-99 (1979)
[6]Kareiva, P.; Odell, G.: Swarms of predator exhibit preytaxis if individual predators use area-restricted, Search. amer. Natu. 130, 233-270 (1987)
[7]Farkas, M.: On the distribution of capital and labor in a closed economy, Southeast asian bull. Math. 19, 27-36 (1995) · Zbl 0828.90015
[8]Gan, W. Z.; Lin, Z. G.: Coexistence and asymptotic periodicity in a competitor–competitor–mutualist model, J. math. Anal. appl. 337, 1089-1099 (2008) · Zbl 1139.35050 · doi:10.1016/j.jmaa.2007.04.022
[9]Seifert, G.: On a delay-differential equation for single species population variations, Nonlinear anal. 11, 1051-1059 (1987) · Zbl 0629.92019 · doi:10.1016/0362-546X(87)90083-6
[10]Turing, A.: The chemical basis of morphogenesis, Philos. trans. R. soc. Lond. ser. B 237, 37-72 (1952)
[11]Castets, V.; Dulos, E.; Boissonade, J.; De Kepper, P.: Experimental evidence of a sustained standard Turing-type nonequilibrium chemical pattern, Phys. rev. Lett. 64, No. 24, 2952-2956 (1990)
[12]Chen, L.; Jüngle, A.: Analysis of a parabolic cross-diffusion population model without self-diffusion, J. differential equations 224, 39-59 (2006) · Zbl 1096.35060 · doi:10.1016/j.jde.2005.08.002
[13]Maini, Philip K.; Painter, Kevin J.; Chau, Helene Nguyen Phong: Spatial pattern formation in chemical and biological system, J. chem. Soc. Faraday trans. 93, 3601-3610 (1997)
[14]Rietkerk, M.; Dekker, S. C.; De Ruiter, P. C.; Van De Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems, Science 305, 1926-1929 (2004)
[15]Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walkerk, B.: Catastrophic shifts in ecosystems, Nature 413, 591-596 (2001)
[16]J. Shi, Z. Xie, K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems (submitted for publication)
[17]Horatmann, D.: Remarks on some Lotka–Volterra type cross-diffusion models, Nonlinear anal. RWA 8, 90-117 (2007) · Zbl 1134.35058 · doi:10.1016/j.nonrwa.2005.05.008
[18]Lin, Z. G.; Pedersen, M.: Stability in a diffusive food-chain model with michaelis–menten functional response, Nonlinear anal. 57, 421-433 (2004) · Zbl 1053.35026 · doi:10.1016/j.na.2004.02.022
[19]Wang, M. X.: Nonlinear partial differential equations of parabolic type, (1993)
[20]Galiano, G.; Garzòu, M. L.; Jüngle, A.: Semi-discretization and numerical convergence of a nonlinear cross-diffusion population model, Numer. math. 93, 655-673 (2003) · Zbl 1018.65115 · doi:10.1007/s002110200406
[21]Lou, Y.; Ni, W. M.: Diffusion self-diffusion and cross-diffusion, J. differential equations 131, 79C131 (1996) · Zbl 0867.35032 · doi:10.1006/jdeq.1996.0157
[22]Chattopadhyay, J.; Chatterjee, S.: Cross diffusional effect in a Lotka–Volterra competitive system, Nonlinear phenom. Complex syst. 4, No. 4, 364 (2001)