zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimates for eigenvalues of the poly-Laplacian with any order in a unit sphere. (English) Zbl 1180.35389
Summary: We study eigenvalues of the poly-Laplacian with any order on a domain in an n-dimensional unit sphere and obtain estimates for eigenvalues. In particular, the optimal result of Q.-M. Cheng and H. Yang [Math. Ann. 331, No. 2, 445–460 (2005; Zbl 1122.35086)] is included in ours. In order to prove our results, we introduce 2(l+1) functions a i and b i , for i=0,1,,l and two operators μ and η. First of all, we study properties of functions a i and b i and the operators μ and η. By making use of these properties and introducing k free constants, we obtain estimates for eigenvalues.
35P15Estimation of eigenvalues and upper and lower bounds for PD operators
35J91Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J35Higher order elliptic equations, variational problems
[1]Ashbaugh M.S.: Isoperimetric and universal inequalities for eigenvalues. In: Davies, E.B., Safalov, Yu. (eds) Spectral Theory and Geometry (Edinburgh, 1998). London Mathethematical Society, Lecture Notes, vol. 273, pp. 95–139. Cambridge University Press, Cambridge (1999)
[2]Ashbaugh M.S.: Universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Prottter and H.C. Yang. Proc. Indian Acad. Sci. Math. Sci. 112, 3–30 (2002) · Zbl 1199.35261 · doi:10.1007/BF02829638
[3]Chen D., Cheng Q.-M.: Extrinsic estimates for eigenvalues of the Laplace operator. J. Math. Soc. Japan 60, 325–339 (2008) · Zbl 1147.35060 · doi:10.2969/jmsj/06020325
[4]Chen Z.C., Qian C.L.: Estimates for discrete spectrum of Laplacian operator with any order. J. China Univ. Sci. Tech. 20, 259–266 (1990)
[5]Cheng Q.-M., Yang H.C.: Estimates on eigenvalues of Laplacian. Math. Ann. 331, 445–460 (2005) · Zbl 1122.35086 · doi:10.1007/s00208-004-0589-z
[6]Cheng Q.-M., Yang H.C.: Inequalities for eigenvalues of a clamped plate problem. Trans. Am. Math. Soc. 358, 2625–2635 (2006) · Zbl 1096.35095 · doi:10.1090/S0002-9947-05-04023-7
[7]Cheng Q.-M., Yang H.C.: Bounds on eigenvalues of Dirichlet Laplacian. Math. Ann. 337, 159–175 (2007) · Zbl 1110.35052 · doi:10.1007/s00208-006-0030-x
[8]Cheng, Q.-M., Ichikawa, T., Mametsuka, S.: Inequalities for eigenvalues of Laplacian with any order. Commun. Contemp. Math. (2009, to appear)
[9]El Soufi, A., Harrell, E.M., II, Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Amer. Math. Soc. (2009, to appear)
[10]Harrell E.M. II: Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators. Commun. Partial Differ. Equ. 32, 401–413 (2007) · Zbl 05150097 · doi:10.1080/03605300500532889
[11]Hile G.N., Protter M.H.: Inequalities for eigenvalues of the Laplacian. Indiana Univ. Math. J. 29, 523–538 (1980) · Zbl 0454.35064 · doi:10.1512/iumj.1980.29.29040
[12]Hook S.M.: Domain independent upper bounds for eigenvalues of elliptic operator. Trans. Am. Math. Soc. 318, 615–642 (1990) · Zbl 0727.35096 · doi:10.2307/2001323
[13]Levitin M., Parnovski L.: Commutators, spectral trance identities, and universal estimates for eigenvalues. J. Funct. Anal. 192, 425–445 (2002) · Zbl 1058.47022 · doi:10.1006/jfan.2001.3913
[14]Payne L.E., Polya G., Weinberger H.F.: On the ratio of consecutive eigenvalues. J. Math. Phys. 35, 289–298 (1956)
[15]Sun H., Cheng Q.-M., Yang H.C.: Lower order eigenvalues of Dirichlet Laplacian. Manusripta Math. 152, 139–156 (2008) · Zbl 1137.35050 · doi:10.1007/s00229-007-0136-9
[16]Wang Q., Xia C.: Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds. J. Funct. Anal. 245, 334–352 (2007) · Zbl 1113.58013 · doi:10.1016/j.jfa.2006.11.007
[17]Wu F., Cao L.F.: Estimates for eigenvalues of Laplacian operator with any order. Sci. China Ser. A Math. 50, 1078–1086 (2007) · Zbl 1134.35383 · doi:10.1007/s11425-007-0068-6
[18]Yang, H.C.: An estimate of the difference between consecutive eigenvalues, preprint IC/91/60 of ICTP, Trieste (1991)