zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new rational auxiliary equation method and exact solutions of a generalized Zakharov system. (English) Zbl 1180.35445
Summary: A new rational auxiliary equation method for obtaining exact traveling wave solutions of constant coefficient nonlinear partial differential equations of evolution is proposed. Its effectiveness is evinced by obtaining exact solutions of a generalized Zakharov system, some of which are new. It is shown that the G ' /G and the generalized projective Ricatti expansion methods are special cases of the auxiliary equation method. Further, due the solutions obtained, four other new and practicable rational methods are deduced.
MSC:
35Q51Soliton-like equations
35C07Traveling wave solutions of PDE
35A24Methods of ordinary differential equations for PDE
35A30Geometric theory for PDE, characteristics, transformations
References:
[1]Zeng, X.; Wang, Deng-Shan: A generalized extended rational expansion method and its application to (1+1)-dimensional dispersive long wave equation, Applied mathematics and computation 212, 296-304 (2009) · Zbl 1166.65387 · doi:10.1016/j.amc.2009.02.020
[2]Li, W.; Zhang, H.: A new generalized compound Riccati equations rational expansion method to construct many new exact complexiton solutions of nonlinear evolution equations with symbolic computation, Chaos, solitons & fractals 39, 2369-2377 (2009) · Zbl 1197.35238 · doi:10.1016/j.chaos.2007.07.004
[3]Kong, C.; Wang, D.; Song, L.; Zhang, H.: New exact solutions to MKDV-Burgers equation and (2+1)-dimensional dispersive long wave equation via extended Riccati equation method, Chaos, solitons & fractals 39, 697-706 (2009)
[4]Chena, Y.; Li, B.: An extended subequation rational expansion method with symbolic computation and solutions of the nonlinear Schrödinger equation model, Nonlinear analysis: hybrid systems 2, 242-255 (2008) · Zbl 1156.35469 · doi:10.1016/j.nahs.2006.04.008
[5]Li, W.; Zhang, H.: Generalized multiple Riccati equations rational expansion method with symbolic computation to construct exact complexiton solutions of nonlinear partial differential equations, Applied mathematics and computation 197, 288-296 (2008) · Zbl 1135.65385 · doi:10.1016/j.amc.2007.07.050
[6]Xu, T.; Li, J.; Zhang, H. -Q.; Zhang, Ya-Xing; Yao, Zhen-Zhi; Tian, Bo: New extension of the tanh-function method and application to the whithambroerkaup shallow water model with symbolic computation, Physics letters A 369, 458-463 (2007)
[7]Wang, B. -D.; Song, Li-Na; Zhang, H. -Q.: A new extended elliptic equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos, solitons & fractals 33, 1546-1551 (2007)
[8]Zhang, S.: A generalized new auxiliary equation method and its application to the (2+1)-dimensional breaking soliton equations, Applied mathematics and computation 190, 510-516 (2007) · Zbl 1124.35072 · doi:10.1016/j.amc.2007.01.042
[9]Song, L.; Zhang, H.: New complexiton solutions of the nonlinear evolution equations using a generalized rational expansion method with symbolic computation, Applied mathematics and computation 190, 974-986 (2007) · Zbl 1122.65395 · doi:10.1016/j.amc.2007.01.085
[10]Zheng, Y.; Zhang, Y.; Zhang, H.: Generalized Riccati equation rational expansion method and its application, Applied mathematics and computation 189, 490-499 (2007) · Zbl 1123.65107 · doi:10.1016/j.amc.2006.11.111
[11]Wang, D.; Sun, W.; Kong, C.; Zhang, H.: New extended rational expansion method and exact solutionsof Boussinesq equation and jimbomiwa equations, Applied mathematics and computation 189, 878-886 (2007) · Zbl 1122.65396 · doi:10.1016/j.amc.2006.11.142
[12]Zheng, Y.; Zhang, Y.; Zhang, H.: Generalized Riccati equation rational expansion method and its application, Applied mathematics and computation 189, 490-499 (2007) · Zbl 1123.65107 · doi:10.1016/j.amc.2006.11.111
[13]Wang, D.; Sun, W.; Kong, C.; Zhang, H.: New extended rational expansion method and exact solutions of Boussinesq equation and jimbomiwa equations, Applied mathematics and computation 189, 878-886 (2007) · Zbl 1122.65396 · doi:10.1016/j.amc.2006.11.142
[14]Zhang, X. -L.; Zhang, H. -Q.: A new generalized Riccati equation rational expansion method to a class of nonlinear evolution equations with nonlinear terms of any order, Applied mathematics and computation 186, 705-714 (2007) · Zbl 1114.65125 · doi:10.1016/j.amc.2006.08.013
[15]Song, Li-Na; Wang, Q.; Zheng, Y.; Zhang, H. -Q.: A new extended Riccati equation rational expansion method and its application, Chaos, solitons & fractals 31, 548-556 (2007) · Zbl 1138.35403 · doi:10.1016/j.chaos.2005.10.008
[16]Song, L.; Zhang, H.: New exact solutions of the broerkaup equations in (2+1)-dimensional spaces, Applied mathematics and computation 180, 664-675 (2006) · Zbl 1102.65104 · doi:10.1016/j.amc.2006.01.010
[17]Chen, Y.; Yan, Z.: Weierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-satsuma coupled KdV system, Applied mathematics and computation 177, 85-91 (2006) · Zbl 1094.65104 · doi:10.1016/j.amc.2005.10.037
[18]Chen, Y.; Wang, Q.: A unified rational expansion method to construct a series of explicit exact solutions to nonlinear evolution equations, Applied mathematics and computation 177, 396-409 (2006) · Zbl 1094.65103 · doi:10.1016/j.amc.2005.11.018
[19]Chen, Y.; Wang, Q.: A new elliptic equation rational expansion method and its application to the shallow long wave approximate equations, Applied mathematics and computation 173, 1163-1182 (2006) · Zbl 1088.65087 · doi:10.1016/j.amc.2005.04.061
[20]Wang, Q.; Chen, Y.; Zhang, H.: A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation, Chaos, solitons & fractals 25, 1019-1028 (2005)
[21]Abdou, M. A.: An extended Riccati equation rational expansion method and its applications, International journal of nonlinear science 7, No. 1, 57-66 (2009) · Zbl 1161.35477
[22]Javidi, M.; Golbabai, A.: Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method, Chaos, solitons & fractals 36, 309-313 (2008)
[23]Li, Ya-Zhou; Li, Kai-Ming; Lin, C.: Exp-function method for solving the generalized-Zakharov equations, Applied mathematics and computation 205, 197-201 (2008) · Zbl 1160.35523 · doi:10.1016/j.amc.2008.05.138
[24]Zhang, H.: New exact travelling wave solutions to the generalized Zakharov equations, Report math phys 60, 97-106 (2007) · Zbl 1170.35524 · doi:10.1016/S0034-4877(07)80101-7
[25]Borhanifar, A.; Kabir, M. M.; Vahdat, L. Maryam: New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik – Novikov – Veselov system, Chaos, solitons & fractals (2009)
[26]Yang, X. -L.; Tang, J. -S.: Explicit exact solutions for the generalized Zakharov equations with nonlinear terms of any order, Computers and mathematics with applications 57, 1622-1629 (2009) · Zbl 1186.34007 · doi:10.1016/j.camwa.2009.01.021
[27]Wang, M.; Li, X.: Extended F-expansion and periodic wave solutions for the generalized Zakharov equations, Physical letters A 343, 48-54 (2005) · Zbl 1181.35255 · doi:10.1016/j.physleta.2005.05.085
[28]Abdou, M. A.: A generalized auxiliary equation method and its applications, Nonlinear dynamics 52, No. 1-2, 95-102 (2008) · Zbl 1173.35673 · doi:10.1007/s11071-007-9261-y
[29]Maugin, G. A.: Nonlinear waves in elastic crystals, (1999) · Zbl 0943.74002
[30]Zakharov, V. E.: Collapse of Langmuir waves, Soviet physics JETP 35, 908-914 (1972)
[31]Kudryashov, N. A.: Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos, solitons & fractals 24, No. 5, 1217-1231 (2005) · Zbl 1069.35018 · doi:10.1016/j.chaos.2004.09.109
[32]Layeni, O. P.: Note on exact solutions for a class of nonlinear diffusion equations, Applied mathematics and computation 210, 465-472 (2009) · Zbl 1170.35451 · doi:10.1016/j.amc.2009.01.012
[33]O.P. Layeni, New exact solutions for some power law nonlinear diffusion equation, Journal of Applied Mathematics and Computing (2009), doi:10.1007/s12190-009-0344-4.
[34], Encyclopedia of nonlinear science (2005)
[35]El-Wakil, S. A.; Abdou, M. A.; Hendi, A.: New periodic and soliton solutions of nonlinear evolution equations, Applied mathematics and computation 197, 497-506 (2008)
[36]Wanga, M.; Lia, X.; Zhang, J.: The (G ' /G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics letters A 372, No. 4, 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[37]Yan, Z. Y.: Generalized method and its application in the higher-order nonlinear Schrödinger equation in nonlinear optical fibres, Chaos, solitons & fractals 16, 759 (2003) · Zbl 1035.78006 · doi:10.1016/S0960-0779(02)00435-6