zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New solutions for the modified generalized Degasperis-Procesi equation. (English) Zbl 1180.35447
Summary: Using three distinct computational methods we obtain some new exact solutions for the generalized modified Degasperis-Procesi equation (mDP equation) u t -u xxt +(b+1)u 2 u x =bu x u xx +uu xxx . We show the graph of some of the new solutions obtained here with the aim to illustrate their physical relevance. Mathematica is used.
35Q51Soliton-like equations
35C07Traveling wave solutions of PDE
35-04Machine computation, programs (partial differential equations)
35A30Geometric theory for PDE, characteristics, transformations
[1]A. Degasperis, M. Procesi, Asymptotic integrability, in: A. Degasperis, G. Gaeta (Eds.), Symmetry and Perturbation Theory, (Rome, 1998), World Scientific Publishing, River Edge, NJ, 1998. pp. 23 – 37.
[2]Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solitons, Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[3]Degasperis, A.; Holm, D. D.; Hone, A. N. W.: A new integrable equation with peakon solutions, Theor. math. Phys. 133, 1463-1474 (2002)
[4]A. Degasperis, D.D. Holm, A.N.W. Hone, Integrable and non-integrable equations with peakons, in: M.J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari (Eds.), Nonlinear Physics, Theory and Experiment (Gallipoli, 2002), vol. II, World Scientific Publishing, Singapore, pp. 37 – 43, Preprint nlin.SI/0209008.
[5]Liu, Z.; Ouyang, Z.: A note on solitary waves for modified forms of Camassa – Holm and Degasperis – Procesi equations, Phys. lett. A 366, 377-381 (2007) · Zbl 1203.35234 · doi:10.1016/j.physleta.2007.01.074
[6]Wazwaz, A.: Solitary wave solutions for modified forms of Degasperis – Procesi and Camassa – Holm equations, Phys. lett. A 352, 500-504 (2006) · Zbl 1187.35199 · doi:10.1016/j.physleta.2005.12.036
[7]Cole, J. D.: A quasi-linear parabolic equation occurring in aerodynamics, Quart. appl. Math. 9, 225-236 (1951) · Zbl 0043.09902
[8]Hopf, E.: The partial differential equation ut+uux=uxx, Commun. pure appl. Math. 3, 201-230 (1950) · Zbl 0039.10403 · doi:10.1002/cpa.3160030302
[9]Salas, A.; Gomez, C.: The Cole – Hopf transformation and improved tanh – coth method applied to new integrable system (KdV6), Appl. math. Comput. 204, 957-962 (2008) · Zbl 1157.65457 · doi:10.1016/j.amc.2008.08.006
[10]Abdou, M. A.; Soliman, A. A.: Modified extended tanh-function method and its application on nonlinear physical equations, Phys. lett. A 353, 487-492 (2006)