zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A family of three-point methods of optimal order for solving nonlinear equations. (English) Zbl 1180.65058
Summary: A family of three-point iterative methods for solving nonlinear equations is constructed using a suitable parametric function and two arbitrary real parameters. It is proved that these methods have the convergence order eight requiring only four function evaluations per iteration. In this way, it is demonstrated that the proposed class of methods supports the Kung-Traub hypothesis [H. T. Kung and J. F. Traub, J. Assoc. Comput. Mach. 21, 643–651 (1974; Zbl 0289.65023)] on the upper bound 2 n of the order of multipoint methods based on n+1 function evaluations. Consequently, this class of root solvers possesses very high computational efficiency. Numerical examples are included to demonstrate exceptional convergence speed with only few function evaluations.

65H05Single nonlinear equations (numerical methods)
[1]Traub, J. F.: Iterative methods for solution of equations, (1964) · Zbl 0121.11204
[2]Ostrowski, A. M.: Solution of equations and systems of equations, (1960) · Zbl 0115.11201
[3]Kung, H. T.; Traub, J. F.: Optimal order of one-point and multipoint iteration, J. ACM 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[4]Jarratt, P.: Some fourth order multipoint methods for solving equations, Math. comp. 20, 434-437 (1966) · Zbl 0229.65049 · doi:10.2307/2003602
[5]King, R.: A family of fourth order methods for nonlinear equations, SIAM J. Numer. anal. 10, 876-879 (1973) · Zbl 0266.65040 · doi:10.1137/0710072
[6]Maheshwari, A. K.: A fourth-order iterative method for solving nonlinear equatiobs, Appl. math. Comput. 211, 383-391 (2009) · Zbl 1162.65346 · doi:10.1016/j.amc.2009.01.047
[7]Kou, J.; Li, Y.; Wang, X.: A composite fourth-order iterative method, Appl. math. Comput. 184, 471-475 (2007) · Zbl 1114.65045 · doi:10.1016/j.amc.2006.05.181
[8]Chun, C.: A family of composite fourth-order iterative methods for solving nonlinear equations, Appl. math. Comput. 187, 951-956 (2007) · Zbl 1116.65054 · doi:10.1016/j.amc.2006.09.009
[9]Chun, C.; Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods, Appl. math. Comput. 193, 389-394 (2007) · Zbl 1193.65055 · doi:10.1016/j.amc.2007.03.074
[10]Grau, M.; Diaz-Barrero, J. L.: An improvement to Ostrowski root-finding methods, J. math. Anal. appl. 173, 450-456 (2006) · Zbl 1090.65053 · doi:10.1016/j.amc.2005.04.043
[11]Kou, J.; Li, Y.; Wang, X.: Some variants of Ostrowski’s method with seventh-order convergence, J. comput. Appl. math. 209, 153-159 (2007) · Zbl 1130.41006 · doi:10.1016/j.cam.2006.10.073
[12]Sharma, J. R.; Guha, R. K.: A family of modified Ostrowski methods with accelerated sixth-order convergence, Appl. math. Comput. 190, 111-115 (2007) · Zbl 1126.65046 · doi:10.1016/j.amc.2007.01.009
[13]Bi, W.; Ren, H.; Wu, Q.: Three-step iterative methods with eight-order convergence for solving nonlinear equations, J. comput. Appl. math. 225, 105-112 (2009) · Zbl 1161.65039 · doi:10.1016/j.cam.2008.07.004
[14]Bi, W.; Ren, H.; Wu, Q.: A new family of eight-order iterative methods for solving nonlinear equations, Appl. math. Comput. 214, 236-245 (2009) · Zbl 1173.65030 · doi:10.1016/j.amc.2009.03.077
[15]Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett. 13, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2