zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy analysis method for systems of fractional integro-differential equations. (English) Zbl 1180.65181

Summary: Based on the homotopy analysis method (HAM), a new analytic technique is proposed to solve systems of fractional integro-differential equations. Comparing with the exact solution, the HAM provides us with a simple way to adjust and control the convergence region of the series solution by introducing an auxiliary parameter . Four examples are tested using the proposed technique. It is shown that the solutions obtained by the Adomian decomposition method are only special cases of the HAM solutions.

The present work shows the validity and great potential of the homotopy analysis method for solving linear and nonlinear systems of fractional integro-differential equations. The basic idea described in this article is expected to be further employed to solve other similar nonlinear problems in fractional calculus.

MSC:
65R20Integral equations (numerical methods)
45J05Integro-ordinary differential equations
45G15Systems of nonlinear integral equations
26A33Fractional derivatives and integrals (real functions)