zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements. (English) Zbl 1180.78048
This paper deals with the numerical analysis of a class of time-harmonic Maxwell equations in 3D polyhedral domains. The main contribution in this study is that the authors propose a constrained formulation which is obtained by adding a constraint on the divergence of the field. In the first part of the paper the authors recall the time-harmonic Maxwell equations, which are expressed as a set of second-order partial differential equations. Next, it is introduced the functional framework and it is developed the continuous variational formulation of the problem. The authors also prove the convergence of the discretized eigenmodes towards the exact eigenmodes. In the last section of the paper there are proposed some numerical examples to illustrate the behavior of the method.
MSC:
78M10Finite element methods (optics)
35Q60PDEs in connection with optics and electromagnetic theory
65N25Numerical methods for eigenvalue problems (BVP of PDE)
References:
[1]Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998) · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[2]Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999)
[3]Assous F., Ciarlet P. Jr, Garcia E., Segré J.: Time-dependent Maxwell’s equations with charges in singular geometries. Comput. Methods Appl. Mech. Eng. 196, 665–681 (2006) · Zbl 1121.78305 · doi:10.1016/j.cma.2006.07.007
[4]Assous F., Ciarlet P. Jr, Segré J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161, 218–249 (2000) · Zbl 1007.78014 · doi:10.1006/jcph.2000.6499
[5]Assous F., Ciarlet P. Jr, Sonnendrücker E.: Resolution of the Maxwell equations in a domain with reentrant corners. Modél. Math. Anal. Numér. 32, 359–389 (1998)
[6]Assous F., Degond P., Heintzé E., Raviart P.-A., Segré J.: On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993) · Zbl 0795.65087 · doi:10.1006/jcph.1993.1214
[7]Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North Holland, Amsterdam (1991)
[8]Boffi D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34, 664–670 (1997) · Zbl 0874.76032 · doi:10.1137/S0036142994270193
[9]Boffi, D.: Compatible discretizations for eigenvalue problems. In: Compatible Spatial Discretizations, IMA Volumes in Mathematics and its Applications, vol. 142, pp. 121–142. Springer, Berlin (2006)
[10]Boffi D., Brezzi F., Gastaldi L.: On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci. 25, 131–154 (1997)
[11]Brenner S., Li F., Sung L.-Y.: A locally divergence-free interior penalty method for two dimensional curl–curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008) · Zbl 1168.65068 · doi:10.1137/060671760
[12]Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, Berlin (1991)
[13]Ciarlet P. Jr: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194, 559–586 (2005) · Zbl 1063.78018 · doi:10.1016/j.cma.2004.05.021
[14]Ciarlet P. Jr, Garcia E., Zou J.: Solving Maxwell equations in 3D prismatic domains. C. R. Acad. Sci. Paris, Ser. I 339, 721–726 (2004)
[15]Ciarlet P. Jr, Girault V.: Inf-sup condition for the 3D, P 2so 1 Taylor–Hood finite element; application to Maxwell equations. C. R. Acad. Sci. Paris, Ser. I 335, 827–832 (2002)
[16]Ciarlet, P. Jr., Hechme, G.: Mixed, augmented variational formulations for Maxwell’s equations: numerical analysis via the macroelement technique. Numer. Math. (submitted)
[17]Ciarlet P. Jr, Hechme G.: Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comput. Methods Appl. Mech. Eng. 198, 358–365 (2008)
[18]Costabel M.: A coercive bilinear form for Maxwell’s equations. J. Math. An. Appl. 157, 527–541 (1991) · Zbl 0738.35095 · doi:10.1016/0022-247X(91)90104-8
[19]Costabel M., Dauge M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002) · Zbl 1019.78009 · doi:10.1007/s002110100388
[20]Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 125–161. Springer, Berlin (2003)
[21]Costabel M., Dauge M., Schwab C.: Exponential convergence of hp-FEM for Maxwell’s equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575–622 (2005) · Zbl 1078.65089 · doi:10.1142/S0218202505000480
[22]Dauge, M.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions (2004). See Monique Dauge’s personal web page at the location http://perso.univ-rennes1.fr/monique.dauge/core/index.html
[23]Garcia, E.: Solution to the instationary Maxwell equations with charges in non-convex domains (in French). Ph.D. Thesis, Université Paris VI, France (2002)
[24]Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)
[25]Hazard C., Lohrengel S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Appl. Math. 40, 1021–1040 (2002)
[26]Heintzé, E.: Solution to the 3D instationary Maxwell equations with conforming finite elements (in French). Ph.D. Thesis, Université Paris VI, France (1992)
[27]Jamelot E.: Éléments finis nodaux pour les équations de Maxwell. C. R. Acad. Sci. Paris, Sér. I 339, 809–814 (2004)
[28]Jamelot, E.: Solution to Maxwell equations with continuous Galerkin finite elements (in French). Ph.D. Thesis, École Polytechnique, Palaiseau, France (2005)
[29]Labrunie, S.: The Fourier singular complement method for Maxwell equations in axisymmetric domains (in French). Technical Report 2004-42, Institut Elie Cartan, Nancy I University, Vandoeuvre-lès-Nancy, France (2004)
[30]Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990) · doi:10.1090/S0025-5718-1990-1011446-7
[31]Sorokina T., Worsey A.J.: A multivariate Powell–Sabin interpolant. Adv. Comput. Math. 29, 71–89 (2008) · Zbl 1154.65009 · doi:10.1007/s10444-007-9041-8
[32]Weber C.: A local compactness theorem for Maxwell’s equations. Math. Meth. Appl. Sci. 2, 12–25 (1980) · Zbl 0432.35032 · doi:10.1002/mma.1670020103