zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite-time formation control for multi-agent systems. (English) Zbl 1180.93006
Summary: We develop a new finite-time formation control framework for multi-agent systems with a large population of members. In this framework, we divide the formation information into two independent parts, namely, the global information and the local information. The global formation information decides the geometric pattern of the desired formation. Furthermore, it is assumed that only a small number of agents, which are responsible for the navigation of the whole team, can obtain the global formation information, and the other agents regulate their positions by the local information in a distributed manner. This approach can greatly reduce the data exchange and can easily realize various kinds of complex formations. As a theoretical preparation, we first propose a class of nonlinear consensus protocols, which ensures that the related states of all agents will reach an agreement in a finite time under suitable conditions. And then we apply these consensus protocols to the formation control, including time-invariant formation, time-varying formation and trajectory tracking, respectively. It is shown that all agents will maintain the expected formation in a finite time. Finally, several simulations are worked out to illustrate the effectiveness of our theoretical results.
93A14Decentralized systems
93B50Synthesis problems
94C15Applications of graph theory to circuits and networks