zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
H estimation for discrete-time piecewise homogeneous Markov jump linear systems. (English) Zbl 1180.93100
Summary: This paper concerns the problem of H estimation for a class of Markov Jump Linear Systems (MJLS) with time-varying Transition Probabilities (TPs) in discrete-time domain. The time-varying character of TPs is considered to be finite piecewise homogeneous and the variations in the finite set are considered to be of two types: arbitrary variation and stochastic variation, respectively. The latter means that the variation is subject to a higher-level transition probability matrix. The mode-dependent and variation-dependent H filter is designed such that the resulting closed-loop systems are stochastically stable and have a guaranteed H filtering error performance index. Using the idea in the recent studies of partially unknown TPs for the traditional MJLS with homogeneous TPs, a generalized framework covering the two kinds of variations is proposed. A numerical example is presented to illustrate the effectiveness and the potential of the developed theoretical results.
93E10Estimation and detection in stochastic control
93C55Discrete-time control systems
60J75Jump processes