zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Morrey spaces and fractional integral operators. (English) Zbl 1181.26014
The aim of this paper is to establish the boundedness of fractional integral operators in Morrey spaces defined on quasimetric measure spaces. The author also derives Sobolev-, trace- and two-weight-inequalities for fractional integrals. In the case that the measure satisfies the doubling condition, the derived conditions are necessary and sufficient for appropriate inequalities.
26A33Fractional derivatives and integrals (real functions)
42B35Function spaces arising in harmonic analysis
47B38Operators on function spaces (general)
[1]Adams, D. R.: A trace inequality for generalized potentials, Studia math. 48, 99-105 (1973) · Zbl 0237.46037
[2]Adams, D. R.: A note on Riesz potentials, Duke math. J. 42, No. 4, 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[3]Burenkov, V.; Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Studia math. 163, No. 2, 157-176 (2004) · Zbl 1044.42015 · doi:10.4064/sm163-2-4 · doi:http://journals.impan.gov.pl/sm/Inf/163-2-4.html
[4]Burenkov, I. V.; Guliyev, H. V.; Guliyev, V. S.: Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces, Dokl. akad. Nauk 409, No. 4, 443-447 (2006) · Zbl 1135.42011 · doi:10.1134/S1064562406040181
[5]Edmunds, D.; Kokilashvili, V.; Meskhi, A.: Bounded and compact integral operators, mathematics and its applications, Bounded and compact integral operators, mathematics and its applications 543 (2002) · Zbl 1023.42001
[6]Eridani, V. Kokilashvili, A. Meskhi, Morrey spaces and fractional integral operators, Preprint No. 65, School of Mathematical Sciences, GC University, Lahore, 2007.
[7]García-Cuerva, J.; Gatto, A. E.: Boundedness properties of fractional integral operators associated to non-doubling measures, Studia math. 162, No. 3, 245-261 (2004) · Zbl 1045.42006 · doi:10.4064/sm162-3-5 · doi:http://journals.impan.gov.pl/sm/Inf/162-3-5.html
[8]García-Cuerva, J.; Martell, J. M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, Indiana univ. Math. J. 50, No. 3, 1241-1280 (2001) · Zbl 1023.42012 · doi:10.1512/iumj.2001.50.2100
[9]Genebashvili, I.; Gogatishvili, A.; Kokilashvili, V.: Solution of two-weight problems for integral transforms with positive kernels, Georgian math. J. 3, No. 1, 319-342 (1996) · Zbl 1056.42507 · doi:10.1007/BF02256723 · doi:emis:journals/GMJ/vol3/contents.htm
[10]Genebashvili, I.; Gogatishvili, A.; Kokilashvili, V.; Krbec, M.: Weight theory for integral transforms on spaces of homogeneous type, Pitman monographs and surveys in pure and applied mathematics, Weight theory for integral transforms on spaces of homogeneous type, Pitman monographs and surveys in pure and applied mathematics 92 (1998) · Zbl 0955.42001
[11]V. Kokilashvili, Weighted estimates for classical integral operators, in: Nonlinear Analysis, Function Spaces and Applications IV, Roudnice nad Labem, vol. 119, Teubner-Texte Math, Leipzig, 1990, pp. 86 – 103. · Zbl 0746.47027
[12]Kokilashvili, V.; Meskhi, A.: Fractional integrals on measure spaces, Frac. calc. Appl. anal. 4, No. 4, 1-24 (2001) · Zbl 1065.47503
[13]Kokilashvili, V.; Meskhi, A.: On some weighted inequalities for fractional integrals on non-homogeneous spaces, Z. anal. Anwend. 24, No. 4, 871-885 (2005) · Zbl 1094.42010
[14]Komori, Y.; Mizuhara, T.: Notes on commutators and Morrey spaces, Hokkaido math. J. 32, 345-353 (2003) · Zbl 1044.42011
[15]Peetre, J.: On the theory of lp,λ spaces, J. funct. Anal. 4, 71-87 (1969) · Zbl 0175.42602 · doi:10.1016/0022-1236(69)90022-6
[16]Samko, S.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives. Theory and applications, (1993) · Zbl 0818.26003
[17]Sawano, Y.; Tanaka, H.: Morrey spaces for nondoubling measures, Acta math. Sinica 21, No. 6, 1535-1544 (2005) · Zbl 1129.42403 · doi:10.1007/s10114-005-0660-z
[18]Stein, E. M.; Weiss, G.: Fractional integrals on n-dimensional Euclidean spaces, J. math. Mech. 7, No. 4, 503-514 (1958) · Zbl 0082.27201
[19]Strömberg, J. O.; Torchinsky, A.: Weighted Hardy spaces, lecture notes in mathematics, Weighted Hardy spaces, lecture notes in mathematics 1381 (1989) · Zbl 0676.42021