zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimates for the zeros of differences of meromorphic functions. (English) Zbl 1181.30016
Summary: Let f be a transcendental meromorphic function, g(z)=f(z+c 1 )+f(z+c 2 )-2f(z), and g 2 (z)=f(z+c 1 )·f(z+c 2 )-f 2 (z). The exponents of convergence of zeros of g(z), g 2 (z), g(z)/f(z), and g 2 (z)/f 2 (z) are estimated accurately.
MSC:
30D35Distribution of values (one complex variable); Nevanlinna theory
References:
[1]Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964
[2]Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin: W. de Gruyter, 1993
[3]Yang L. Value Distribution Theory and New Research (in Chinese). Beijing: Science Press, 1982
[4]Ablowitz M, Halburd R G, Herbst B. On the extension of Painlevé property to difference equations. Nonlinearty, 13: 889–905 (2000) · Zbl 0956.39003 · doi:10.1088/0951-7715/13/3/321
[5]Bergweiler W, Langley J K. Zeros of differences of meromorphic functions. Math Proc Camb Phil Soc, 142: 133–147 (2007) · Zbl 1114.30028 · doi:10.1017/S0305004106009777
[6]Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. Ramanujan J, 16: 105–129 (2008) · Zbl 1152.30024 · doi:10.1007/s11139-007-9101-1
[7]Halburd R G, Korhonen R. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J Math Anal Appl, 314: 477–487 (2006) · Zbl 1085.30026 · doi:10.1016/j.jmaa.2005.04.010
[8]Halburd R G, Korhonen R. Nevanlinna theory for the difference operator. Ann Acad Sci Fenn Math, 31: 463–478 (2006)
[9]Heittokangas J, Korhonen R, Laine I, et al. Complex difference equations of Malmquist type. Comput Methods Funct Theory, 1: 27–39 (2001)
[10]Ishizaki K, Yanagihara N. Wiman-Valiron method for difference equations. Nagoya Math J, 175: 75–102 (2004)
[11]Laine I, Yang C C. Clunie theorems for difference and q-differene polynomials. J London Math Soc, 76: 556–566 (2007) · Zbl 1132.30013 · doi:10.1112/jlms/jdm073
[12]Bergweiler W, Eremenko A. On the singularities of the inverse to a meromorphic function of finite order. Rev Mat Iberoamericana, 11: 355–373 (1995)
[13]Eremenko A, Langley J K, Rossi J. On the zeros of meromorphic functions of the form k=1 ak z-z k . J Anal Math, 62: 271–286 (1994) · Zbl 0818.30020 · doi:10.1007/BF02835958
[14]Hinchliffe J D. The Bergweiler-Eremenko theorem for finite lower order. Results Math, 43: 121–128 (2003)
[15]Clunie J, Eremenko A, Rossi J. On equilibrium points of logarithmic and Newtonian potentials. J London Math Soc, 47(2): 309–320 (1993) · Zbl 0797.31002 · doi:10.1112/jlms/s2-47.2.309
[16]Hayman W K. Slowly growing integral and subharmonic functions. Comment Math Helv, 34: 75–84 (1960) · Zbl 0123.26702 · doi:10.1007/BF02565929
[17]Hayman W K. The local growth of power series: a survey of the Wiman-Valiron method. Canad Math Bull, 17: 317–358 (1974) · Zbl 0314.30021 · doi:10.4153/CMB-1974-064-0
[18]Chen Z X, Shon K H. On subnormal solutions of second order linear periodic differential equations. Sci China Ser A, 50(6): 786–800 (2007) · Zbl 1132.34064 · doi:10.1007/s11425-007-0050-3