zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal control of the viscous Dullin-Gottwalld-Holm equation. (English) Zbl 1181.35200
Summary: This paper studies the problem for optimal control of the viscous DGH equation. The existence and uniqueness of weak solution to the equation are proved in a short interval. The optimal control of the viscous DGH equation under boundary condition is given and the existence of optimal solution to the equation is proved.
MSC:
35Q35PDEs in connection with fluid mechanics
35Q51Soliton-like equations
49J20Optimal control problems with PDE (existence)
References:
[1]Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: An integrable shallow water equation with linear and nonlinear dispersion, Phys. lett. 87, 1945-1948 (2001)
[2]Constantin, A.; Gerdjilov, V.; Ivanov, R. I.: Inverse scatting transform for the Camassa–Holm equation, Inverse problems 22, 2197-2207 (2006) · Zbl 1105.37044 · doi:10.1088/0266-5611/22/6/017
[3]Christov, O.; Hakkaev, S.: On the inverse scatting approach and action-angle variables for the dullin-gottwald-Holm equation, Physica D 238, 9-19 (2009) · Zbl 1155.76014 · doi:10.1016/j.physd.2008.08.014
[4]Drazin, P. G.; Johnson, R. S.: Solitons: an introduction, (1989)
[5]Mckean, H. P.: Integrable systems and algebraic curves, Springer lecture notes in mathematics 755, 83-200 (1979) · Zbl 0449.35080
[6]Kenig, C.; Ponce, G.; Vega, L.: Well-posedness and scattering results for the generalized Korteweg–deveris equation via the contraction principle, Comm. pure appl. Math. 46, 527-620 (1993) · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[7]T. Tao, Low-regularity global solutions to nonlinear dispersive equations, In: Surveys in analysis and operator theory (Canberra, 2001), Proc. Centre Math. Appl. Austral. Nat. Univ. 40, Austral. Nat. Univ., Canberra, 2002, pp. 19–48 · Zbl 1042.35068
[8]Whitham, G. B.: Linear and nonlinear waves, (1980)
[9]Camassa, R.; Holm, D. D.: An integrable shallow water equation with peaked solitons, Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[10]Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: An integrable shallow water equation with linear and nonlinear dispersion, Phys. rev. Lett. 87, 4501-4504 (2001)
[11]Johnson, R. S.: Camassa–Holm, Korteweg–de Vries and related models for water waves, J. fluid mech. 455, 63-82 (2002) · Zbl 1037.76006 · doi:10.1017/S0022112001007224
[12]Ionescu-Kruse, D.: Variational derivation of the Camassa–Holm shallow water equation, J. nonlinear math. Phys. 14, 303-312 (2007) · Zbl 1157.76005 · doi:10.2991/jnmp.2007.14.3.1
[13]A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., (in print) doi:10.1007/s00205-008-0128-2
[14]Constantin, A.; Strauss, W.: Stability of a class of solitary waves in compressible elastic rods, Phys. lett. A 270, 140-148 (2000) · Zbl 1115.74339 · doi:10.1016/S0375-9601(00)00255-3
[15]Dai, H. H.: Model equations for nonlinear dispersive waves in a compressible mooney-rivlin rod, Acta. mech. 127, 193-207 (1998) · Zbl 0910.73036 · doi:10.1007/BF01170373
[16]Lenells, J.: Conservation laws of the Camassa–Holm equation, J. phys. A 38, 869-880 (2005) · Zbl 1076.35100 · doi:10.1088/0305-4470/38/4/007
[17]Fokas, A.; Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D 4, 47-66 (1981) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[18]Constantin, A.: On the scattering problem for the Camassa–Holm equation, Proc. R. Soc. lond. A 457, 953-970 (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[19]Cooper, F.; Shepard, H.: Solitions in the Camassa–Holm shallow water equation, Phys. lett. A 194, No. 4, 246-250 (1994) · Zbl 0961.76512 · doi:10.1016/0375-9601(94)91246-7
[20]Johnson, R. S.: On solutions of the Camassa–Holm equation, Roy. soc. London proc. Ser. A math. Phys. eng. Sci. 459, 1687-1708 (2003) · Zbl 1039.76006 · doi:10.1098/rspa.2002.1051
[21]Constantin, A.; Strauss, W.: Stability of the Camassa–Holm solitons, J. nonlinear sci. 12, 415-422 (2002) · Zbl 1022.35053 · doi:10.1007/s00332-002-0517-x
[22]Constantin, A.; Escher, J.: Global existence and blow-up for a shallow water equation, Ann. sc. Norm super. Pisa 26, 303-328 (1998) · Zbl 0918.35005 · doi:numdam:ASNSP_1998_4_26_2_303_0
[23]Li, P.; Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. differential equations 162, 27-63 (2000) · Zbl 0958.35119 · doi:10.1006/jdeq.1999.3683
[24]Rodriguez-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation, Nonlinear anal. 46, 309-327 (2001) · Zbl 0980.35150 · doi:10.1016/S0362-546X(01)00791-X
[25]Constantin, A.: Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. inst. Fourier (Grenoble) 50, 321-362 (2000) · Zbl 0944.35062 · doi:10.5802/aif.1757 · doi:numdam:AIF_2000__50_2_321_0
[26]Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations, Acta math. 181, 229-243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[27]Constantin, A.; Mckean, H. P.: A shallow water equation on the circle, Comm. pure appl. Math. 52, 949-982 (1999) · Zbl 0940.35177 · doi:10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D
[28]Liu, Y.: Global existence and blow-up solutions for a nonlinear shallow water equation, Math. ann. 335, 717-735 (2006) · Zbl 1102.35021 · doi:10.1007/s00208-006-0768-1
[29]Bressan, A.; Constantin, A.: Global conservative solutions of the Camassa–Holm equation, Arch. rat. Mech. anal. 183, 215-239 (2007) · Zbl 1105.76013 · doi:10.1007/s00205-006-0010-z
[30]Constantin, A.; Escher, J.: Global weak solutions for a shallow water equation, Indiana univ. Math. J. 47, 1527-1545 (1998) · Zbl 0930.35133 · doi:10.1512/iumj.1998.47.1466
[31]Constantin, A.; Molinet, L.: Global weak solutions for a shallow water equation, Comm. math. Phys. 211, 45-61 (2000) · Zbl 1002.35101 · doi:10.1007/s002200050801
[32]Xin, Z.; Zhang, P.: On the weak solutions to a shallow water equation, Comm. pure appl. Math. 53, 1411-1433 (2000) · Zbl 1048.35092 · doi:10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
[33]Dullin, H. R.; Gottwald, G. A.; Holm, D. D.: Camassa–Holm, Korteweg -de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid dynam. Res. 33, 73-79 (2003) · Zbl 1032.76518 · doi:10.1016/S0169-5983(03)00046-7
[34]Constantin, A.: The trajectories of particles in Stokes waves, Invent. math. 166, 523-535 (2006) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[35]Toland, J. F.: Stokes waves, Topol. methods nonlinear anal. 7, 1-48 (1996)
[36]Constantin, A.; Escher, J.: Particle trajectories in solitary water waves, Bull. amer. Math. soc. 44, 423-431 (2007) · Zbl 1126.76012 · doi:10.1090/S0273-0979-07-01159-7
[37]Constantin, A.; Strauss, W.: Stability of peakons, Comm. pure appl. Math. 53, 603-610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[38]Constantin, A.; Molinet, L.: Orbital stability of solitary waves for a shallow water equation, Physica D 157, 75-89 (2001) · Zbl 0984.35139 · doi:10.1016/S0167-2789(01)00298-6
[39]Lenells, J.: A variational approach to the stability of periodic peakons, J. nonlinear math. Phys. 11, 151-163 (2004) · Zbl 1067.35076 · doi:10.2991/jnmp.2004.11.2.2
[40]Camassa, R.; Holm, D. D.; Hyman, J.: A new integrable shallow water equation, Adv. appl. Mech. 31, 1-33 (1994) · Zbl 0808.76011
[41]Tian, Lixin; Gui, Guilong; Liu, Yue: On the well-posedness problem and scattering problem for the dullin–gottwalld–Holm equation, Comm. math. Phys. 257, 667-701 (2005) · Zbl 1080.76016 · doi:10.1007/s00220-005-1356-z
[42]Tian, Lixin; Fang, Guochang; Gui, Guilong: Well-posedness and blowup for an integrable shallow water equation with strong dispersive term, Int. J. Nonlinear sci. 1, No. 1, 3-13 (2006)
[43]Lu, Dianchen; Peng, Deijun; Tian, Lixin: On the well-posedness problem for the generalized DGH equation, Int. J. Nonlinear sci. 1, No. 3, 178-186 (2006)
[44]Tian, Lixin; Shi, Qing: Boundary control of viscous dullin-gottwald-Holm equation, Int. J. Nonlinear sci. 4, No. 1, 67-75 (2007)
[45]Ito, K.; Ravindranss, S. S.: A redurced-basis method for control problems governed by pdes. Control and estimation of distributed parameter systems, Internat. ser. Numer. math. 126, 153-168 (1998)
[46]Atweil, J. A.; King, B. B.: Proper orthogonal decomposition for reduced basis feedback controller for parabolic equation, Math. model. 33, 1-19 (2001) · Zbl 0964.93032 · doi:10.1016/S0895-7177(00)00225-9
[47]Hu, C. B.; Temam, R.: Robust control the kuramto–sivashing equation. Dynamics of continuous, Discrete and impulsive systems series B: application & algorithms 8, 315-338 (2001)
[48]Kunisch, K.; Volkwein, S.: Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. optim. Theory appl. 102, No. 2, 345-371 (1999) · Zbl 0949.93039 · doi:10.1023/A:1021732508059
[49]Hinze, M.; Volkwein, S.: Analysis of instantaneous control for the Burgers equation, Nonlinear anal. TMA 50, No. 1, 1-26 (2002) · Zbl 1022.49001 · doi:10.1016/S0362-546X(01)00750-7
[50]Volkwein, S.: Application of augmented Lagrangian-SQP method to optimal control problems for the stationary Burgers equation, Comput. optim. Appl. 16, 57-81 (2000) · Zbl 0974.49020 · doi:10.1023/A:1008777520259
[51]Volkwein, S.: Distributed control problems for the Burgers equation, Comput. optim. Appl. 16, 57-81 (2000)
[52]Smaoui, N.: Nonlinear boundary control of the generalized Burgers equation, Nonlinear dynam. 37, 75-86 (2004) · Zbl 1078.76026 · doi:10.1023/B:NODY.0000040023.92220.09
[53]Vedantham, Ram: Optimal control of the viscous Burgers equation using an equivalent index method, J. global optim. 18, 255-263 (2000) · Zbl 0974.49003 · doi:10.1023/A:1008362822027
[54]Park, H. M.; Lee, M. W.; Jang, Y. D.: An efficient computational method of boundary optimal control problems for the Burgers equation, Comput. methods appl. Mech. eng. 166, 289-308 (1998) · Zbl 0949.76024 · doi:10.1016/S0045-7825(98)00092-9
[55]Volkwein, S.: Lagrangian-SQP technique for the control constrained optimal boundary control the Burgers equation, Comput. optim. Appl. 26, 253-284 (2003) · Zbl 1077.49024 · doi:10.1023/A:1026047622744
[56]De Los Reyes, J. C.; Kunisch, K.: A comparison of algorithons for control constrained optimal control of the Burgers equation, Calcolo 41, 203-225 (2004) · Zbl 1168.49309 · doi:10.1007/s10092-004-0092-7
[57]Kucuk, I.; Sadek, I.: An efficient computational method for the optimal control problem for the Burgers equation, Math. comput. Modelling 44, 973-982 (2006) · Zbl 1143.49022 · doi:10.1016/j.mcm.2006.03.002
[58]Smaoui, N.: Boundary and distributed control of the viscous Burgers equation, J. comput. Appl. math. 182, 91-104 (2005) · Zbl 1074.93023 · doi:10.1016/j.cam.2004.10.020
[59]Zhu, Min; Tian, Lixin; Zhao, Zhifeng: Optimal control of KdV-Burgers equation, J. JiangSu univ. (Natural science edition) 25, No. 3, 235-238 (2004) · Zbl 1073.49004
[60]Zhao, Zhifeng; Tian, Lixin: Optimal control of sufficient nonlinear KdV-Burgers equation, J. JiangSu univ. (Natural science edition) 26, No. 2, 140-143 (2005) · Zbl 1130.49022
[61]Armaou, A.; Christofides, P. D.: Feedback control of kuramto–sivashing equation, Physica D 137, 49-61 (2000) · Zbl 0952.93060 · doi:10.1016/S0167-2789(99)00175-X
[62]Zhao, Zhifeng: Optimal control of kuramto–sivashing equation, Internat. J. Nonlinear sci. 1, No. 1, 54-58 (2006)
[63]Oksendal, Bernt: Optimal control of stochastic partial differential equations, Stoch. anal. Appl. 23, No. 1, 165-179 (2005) · Zbl 1156.93406 · doi:10.1081/SAP-200044467
[64]Lagnese, J. E.; Leugering, G.: Time-domain decomposition of optimal control problems for the wave equation, System control lett. 48, 229-242 (2003) · Zbl 1134.49313 · doi:10.1016/S0167-6911(02)00268-2
[65]Ghattas, O.; Bark, J. -H.: Optimal control of two- and three-dimensional in compressible Navier–Stokes flows, J. comput. Phys. 136, 231-244 (1997) · Zbl 0893.76067 · doi:10.1006/jcph.1997.5744
[66]Bewley, T.; Teman, R.; Ziane, Mohammed: Existence and uniqueness of optimal control to the Navier–Stokes equations, Optimal control math. Probl. mech. 330, No. 1, 1-5 (2000) · Zbl 0987.49002 · doi:10.1016/S0764-4442(00)00299-8
[67]Wang, Gengsheng: Pontryagin’s maximum principle of optimal control governed by some non-well posed semi-linear parabolic differential equations, Nonlinear anal. TMA 53, 601-618 (2003) · Zbl 1019.49025 · doi:10.1016/S0362-546X(02)00141-4
[68]Yong, Jiongmin: Existence theory of optimal controls for distributed parameter systems, Kodai. math. J. 15, 193-220 (1992) · Zbl 0770.49005 · doi:10.2996/kmj/1138039597
[69]Ahmed, N. U.; Teo, K. L.: Optimal control of systems governed by a class of nonlinear evolution equations in a reflexive Banach space, J. optim. Theory appl. 25, No. 1, 57-81 (1978) · Zbl 0353.49006 · doi:10.1007/BF00933255
[70]Fattorini, H. O.: Optimal control problems for distributed parameter systems in Banach spaces, Appl. math. Optim. 28, 225-257 (1993) · Zbl 0797.49017 · doi:10.1007/BF01200380
[71]Constantin, A.; Kolev, B.: On the geometric approach to the motion of inertial mechanical systems, J. phys. A 35, R51-R79 (2002) · Zbl 1039.37068 · doi:10.1088/0305-4470/35/32/201
[72]Constantin, A.; Kolev, B.: Geodesic flow on the diffeomorphism group of the circle, Comment. math. Helv. 78, 787-804 (2003) · Zbl 1037.37032 · doi:10.1007/s00014-003-0785-6
[73]Constantin, A.; Kappeler, T.; Kolev, B.; Topalov, P.: On geodesic exponential maps of the Virasoro group, Ann. global anal. Geom. 31, 155-180 (2007) · Zbl 1121.35111 · doi:10.1007/s10455-006-9042-8
[74]Tian, Lixin; Shen, Chunyu; Ding, Danping: Optimal control of the viscous Camassa–Holm equation, Nonlinear anal. RWA 10, No. 1, 519-530 (2009) · Zbl 1154.49300 · doi:10.1016/j.nonrwa.2007.10.016
[75]Tian, Lixin; Shen, Chunyu: Optimal control of the viscous Degasperis-Procesi equation, J. math. Phys. 48, No. 11, 113513-113528 (2007) · Zbl 1153.81442 · doi:10.1063/1.2804755
[76]Dautray, R.; Lions, J. L.: Mathematical analysis and numerical methods for science and technology, Evolution problems I 5 (1992) · Zbl 0755.35001
[77]Wouk, A.: A course of applied functional analysis, (1979)
[78]Temam, R.: Navier–Stokes equations, (1979)
[79]Kreyszig, E.: Introductory functional analysis with applications, (1978)