zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Low regularity solutions of two fifth-order KdV type equations. (English) Zbl 1181.35229
Summary: The Kawahara and modified Kawahara equations are fifth-order KdV type equations that have been derived to model many physical phenomena such as gravity-capillary waves and magneto-sound propagation in plasmas. This paper establishes the local well-posedness of the initial-value problem for the Kawahara equation in H s () with s-7/4 and the local well-posedness for the modified Kawahara equation in H s () with s-1/4. To prove these results, we derive a fundamental estimate on dyadic blocks for the Kawahara equation through the [k;Z] multiplier norm method of T. Tao [Am. J. Math. 123, No. 5, 839–908 (2001; Zbl 0998.42005)]. and use this to obtain new bilinear and trilinear estimates in suitable Bourgain spaces.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35A01Existence problems for PDE: global existence, local existence, non-existence
35A02Uniqueness problems for PDE: global uniqueness, local uniqueness, non-uniqueness
35B45A priori estimates for solutions of PDE
References:
[1]J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal. 3 (1993), 107–156, 209–262. · Zbl 0787.35097 · doi:10.1007/BF01896020
[2]S.-B. Cui, D.-G. Deng and S.-P. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with L 2 initial data, Acta Math. Sin. 22 (2006), 1457–1466. · Zbl 1105.35105 · doi:10.1007/s10114-005-0710-6
[3]T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan 33 (1972), 260–264. · doi:10.1143/JPSJ.33.260
[4]C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33–69. · Zbl 0738.35022 · doi:10.1512/iumj.1991.40.40003
[5]C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized KdV equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620. · Zbl 0808.35128 · doi:10.1002/cpa.3160460405
[6]C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-De Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1–21. · Zbl 0787.35090 · doi:10.1215/S0012-7094-93-07101-3
[7]C. E. Kenig, G. Ponce and L. Vega, On the hierarchy of the generalized KdV equations, in Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys. 320, Plenum, New York, 1994, pp. 347–356.
[8]C. E. Kenig, G. Ponce and L. Vega, Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc. 122 (1994), 157–166. · doi:10.1090/S0002-9939-1994-1195480-8
[9]C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), 573–603. · Zbl 0848.35114 · doi:10.1090/S0894-0347-96-00200-7
[10]S. Kichenassamy and P. J. Olver, Existence and nonexistence of solitary wave solutions to high-order model evolution equations, SIAM J. Math. Anal. 23 (1992), 1141–1166. · Zbl 0755.76023 · doi:10.1137/0523064
[11]G. Ponce, Lax pairs and higher order models for water waves, J. Differential Equations 102 (1993), 360–381. · Zbl 0796.35148 · doi:10.1006/jdeq.1993.1034
[12]E.M. Stein, Harmonic Analysis: Real-Variable Methods,Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
[13]S.-P. Tao and S.-B. Cui, Local and global existence of solutions to initial value problems of modified nonlinear Kawahara equations, Acta Math. Sin. 21 (2005), 1035–1044. · Zbl 1084.35077 · doi:10.1007/s10114-004-0446-8
[14]T. Tao, Multilinear weighted convolution of L 2 functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), 839–908. · Zbl 0998.42005 · doi:10.1353/ajm.2001.0035
[15]H. Wang, S.-B. Cui and D.-G. Deng, Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices, Acta Math. Sin. 23 (2007), 1435–1446. · Zbl 1128.35093 · doi:10.1007/s10114-007-0959-z