zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Long-time behavior of solution for coupled Ginzburg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities. (English) Zbl 1181.35271
Summary: The Cauchy problem of coupled Ginzburg-Landau (GL) equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities is considered. The long-time behavior of solution is investigated using a series of sharp a priori estimates in phase space E 1 and E 2 , respectively. The global strong attractor in E 2 is proved by energy equation method, and its bound of dimension is shown.
35Q56Ginzburg-Landau equations
81V80Applications of quantum theory to quantum optics
78A10Physical optics
35B40Asymptotic behavior of solutions of PDE
35B45A priori estimates for solutions of PDE
35B41Attractors (PDE)
[1]Sakaguchi, H.; Malomed, B. A.: Breathing and randomly walking pulses in a semilinear Ginzburg – Landau system, Phys. D 147, 273-282 (2000) · Zbl 0969.35125 · doi:10.1016/S0167-2789(00)00176-7
[2]Sakaguchi, H.; Malomed, B. A.: Instabilities and splitting of pulses in coupled Ginzburg – Landau equations, Phys. D 154, 229-239 (2001) · Zbl 0977.35021 · doi:10.1016/S0167-2789(01)00243-3
[3]Porsezian, K.; Mural, R.; Malomed, Boris A.; Ganapathy, R.: Modulational instability in linearly coupled complex cubic – quintic Ginzburg – Landau equations, Chaos solitons fractals 40, 1907-1913 (2009) · Zbl 1198.35266 · doi:10.1016/j.chaos.2007.09.086
[4]Sakaguchi, H.; Malomed, B. A.: Stable solitons in coupled Ginzburg – Landau equations describing Bose – Einstein condensates and nonlinear optical wave guides and cavities, Phys. D 183, 282-292 (2003) · Zbl 1038.35127 · doi:10.1016/S0167-2789(03)00181-7
[5]Constantin, P.; Foias, C.; Temam, R.: Attractors representing turbulent flows, Mem. amer. Math. soc. 53, No. 314 (1985)
[6]Temam, R.: Infinite dimension dynamical systems in mechanics and physics, (1988)
[7]Ghidaglia, J. M.; Temam, R.: Attractor for damped nonlinear hyperbolic equations, J. math. Pures appl. 66, 319-373 (1987) · Zbl 0572.35071
[8]Li, Donglong; Dai, Zhengde; Liu, Xuhong: Long time behavior for generalized complex Ginzburg – Landau equation, J. math. Anal. appl. 330, 934-948 (2007)
[9]Ghidaglia, J. M.: Finite dimensional behavior for weakly damped driven Schrödinger equations, Ann. inst. H. Poincaré anal. Non linéarie 5, No. 4, 365-405 (1988) · Zbl 0659.35019 · doi:numdam:AIHPC_1988__5_4_365_0
[10]Boling, Guo; Yonghui, Wu: Remarks on the global attractor of the weakly dissipative benjamin – ono equation, Northeast. math. J. 11, No. 4, 489-496 (1995) · Zbl 0860.35103
[11]Babin, A. V.; Vishik, M. I.: Attractors for evolution equations, (1992)
[12]Hale, J. K.: Asymptotic behavior of dissipative system, Math. surveys monogr. 25 (1988) · Zbl 0642.58013
[13]Ladyzhenskaya, O. A.: Attractors for semigroups and evolution equation, (1991) · Zbl 0755.47049
[14]Wang, X.: An energy equation for the weakly damped derived nonlinear Schrödinger equations and its applications, Phys. D 88, 167-175 (1995) · Zbl 0900.35372 · doi:10.1016/0167-2789(95)00196-B
[15]Lions, J.; Magenes, E.: Nonhomogeneous boundary value problems and applications, (1972)
[16]Douady, A.; Oesterlé, J.: Dimension de Hausdorff des attracteurs, C. R. Acad. sci. Paris sér. A 290, 1135-1138 (1980) · Zbl 0443.58016
[17]Zhengde, Dai; Boling, Guo; Fengxing, Chen: Global attractor of a class of strongly damped nonlinear wave equations, Acta math. Sci. 18, No. 4, 404-412 (1998) · Zbl 0926.35093
[18]Zhengde, Dai; Boling, Guo: Global attractor of nonlinear strain waves in elastic waveguides, Acta math. Sci. 20, No. 3, 322-334 (2000) · Zbl 0963.35025