zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Function projective synchronization in coupled chaotic systems. (English) Zbl 1181.37039
Summary: The function projective synchronization is investigated in coupled partially linear chaotic systems. By Lyapunov stability theory, a control law is derived to make the state vectors asymptotically synchronized up to a desired scaling function. Furthermore, based on function projective synchronization, a scheme for secure communication is presented in theory. The corresponding numerical simulations are performed to verify and illustrate the analytical results.
MSC:
37D45Strange attractors, chaotic dynamics
37B25Lyapunov functions and stability; attractors, repellers
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990)
[2]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators, Phys. rev. Lett. 76, 1804-1807 (1996)
[3]Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E 51, 980-994 (1995)
[4]Rosenblum, M. G.; Pikovsky, A. S.; Kurth, J.: From phase to lag synchronization in coupled chaotic oscillators, Phys. rev. Lett. 78, 4193-4196 (1997)
[5]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Phys. rev. Lett. 82, 3042-3045 (1999)
[6]Xu, D.: Control of projective synchronization in chaotic systems, Phys. rev. E 63, 27201-27204 (2001)
[7]Xu, D.; Li, Z.; Bishop, S. R.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos 11, 439-442 (2001) · Zbl 0996.37075 · doi:10.1063/1.1380370
[8]Xu, D.; Chee, C. Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys. rev. E 66, 046218 (2002)
[9]Li, Z.; Xu, D.: Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys. lett. A 282, 175-179 (2001) · Zbl 0983.37036 · doi:10.1016/S0375-9601(01)00185-2
[10]Xu, D.; Ong, W. L.; Li, Z.: Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys. lett. A 305, 167-172 (2002) · Zbl 1001.37026 · doi:10.1016/S0375-9601(02)01445-7
[11]Wen, G.; Xu, D.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos solitons fractals 26, 71-77 (2005) · Zbl 1122.93311 · doi:10.1016/j.chaos.2004.09.117
[12]Yan, J.; Li, C.: Generalized projective synchronization of a unified chaotic system, Chaos solitons fractals 26, 1119-1124 (2005) · Zbl 1073.65147 · doi:10.1016/j.chaos.2005.02.034
[13]Park, J. H.: Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos solitons fractals 34, 1552-1559 (2007) · Zbl 1152.93407 · doi:10.1016/j.chaos.2006.04.047
[14]Li, G. H.: Modified projective synchronization of chaotic system, Chaos solitons fractals 32, 1786-1790 (2007) · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[15]Chen, Y.; Li, X.: Function projective synchronization between two identical chaotic systems, Internat. J. Modern phys. C 18, 883-888 (2007) · Zbl 1139.37301 · doi:10.1142/S0129183107010607
[16]Chee, C. Y.; Xu, D.: Secure digital communication using controlled projective synchronization of chaos, Chaos solitons fractals 23, 1063-1070 (2005) · Zbl 1068.94010 · doi:10.1016/j.chaos.2004.06.017
[17]Li, Z.; Xu, D.: A secure communication scheme using projective chaos synchronization, Chaos solitons fractals 22, 477-481 (2004) · Zbl 1060.93530 · doi:10.1016/j.chaos.2004.02.019
[18]Hu, M.; Xu, Z.: Adaptive feedback controller for projective synchronization, Nonlinear anal. Real world appl. 9, 1253-1260 (2008) · Zbl 1144.93364 · doi:10.1016/j.nonrwa.2007.03.005
[19]Milioua, A. N.; Antoniadesa, I. P.; Stavrinides, S. G.; Anagnostopoulos, A. N.: Secure communication by chaotic synchronization: robustness under noisy conditions, Nonlinear anal. Real world appl. 8, 1003-1012 (2007) · Zbl 1187.94007 · doi:10.1016/j.nonrwa.2006.05.004
[20]Tang, X.; Lu, J.; Zhang, W.: The FPS of chaotic system using backstepping design, China J. Dynam. control 5, 216-219 (2007)