zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetries, horizons, and black hole entropy. (English) Zbl 1181.83102
Summary: Black holes behave as thermodynamic systems, and a central task of any quantum theory of gravity is to explain these thermal properties. A statistical mechanical description of black hole entropy once seemed remote, but today we suffer an embarrassment of riches: despite counting very different states, many inequivalent approaches to quantum gravity obtain identical results. Such “universality” may reflect an underlying two-dimensional conformal symmetry near the horizon, which can be powerful enough to control the thermal characteristics independent of other details of the theory. This picture suggests an elegant description of the relevant degrees of freedom as Goldstone-boson-like excitations arising from symmetry breaking by the conformal anomaly.

MSC:
83C57Black holes
83C47Methods of quantum field theory in general relativity
References:
[1]Strominger, A., Vafa, C.: Phys. Lett. B 379, 99 (1996) hep-th/9601029
[2]Skenderis, K.: Lect. Notes Phys. 541 325 (2000) hep-th/9901050
[3]Mathur, S.D.: Fortsch. Phys. 53, 793 (2005) hep-th/0502050
[4]Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Phys. Rev. Lett. 80, 904 (1998) gr-qc/9710007
[5]Livine, E.R., Terno, D.R.: Nucl. Phys. B 741, 131 (2006) gr-qc/0508085
[6]Frolov, V.P., Fursaev, D.V.: Phys. Rev. D 56, 2212 (1997) hep-th/9703178
[7]Rideout, D., Zohren, S.: Class Quant. Grav. 23, 6195 (2006) gr-qc/0606065
[8]Hawking, S.W., Hunter, C.J.: Phys. Rev. D 59, 044025 (1999) hep-th/9808085
[9]Bombelli L., Koul R.K., Lee J., Sorkin R.D. (1986). Phys. Rev. D 34: 373 · Zbl 1222.83077 · doi:10.1103/PhysRevD.34.373
[10]Emparan, R.: JHEP 0606, 012 (2006) hep-th/0603081
[11]Hawking S.W. (1974). Nature 248: 30 · doi:10.1038/248030a0
[12]Birmingham, D., Gupta, K.S., Sen, S.: Phys. Lett. B 505, 191 (2001) hep-th/0102051
[13]Medved, A.J.M., Martin, D., Visser, M.: Phys. Rev. D 70, 024009 (2004) gr-qc/0403026
[14]Jacobson, T., Kang, G.: Class. Quant. Grav. 10, L201 (1993) gr-qc/9307002
[15]Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005) gr-qc/0502074
[16]Iso, S., Morita, T., Umetsu, H.: hep-th/0701272
[17]Cardy J.A. (1986). Nucl. Phys. B 270: 186 · Zbl 0689.17016 · doi:10.1016/0550-3213(86)90552-3
[18]Blöte H.W.J., Cardy J.A., Nightingale M.P. (1986). Phys. Rev. Lett. 56: 742 · doi:10.1103/PhysRevLett.56.742
[19]Brown J.D., Henneaux M. (1986). Commun. Math. Phys. 104: 207 · Zbl 0584.53039 · doi:10.1007/BF01211590
[20]Carlip, S.: Class. Quant. Grav. 22, R85 (2005) gr-qc/0503022 (review)
[21]Carlip, S.: Phys. Rev. Lett. 82, 2828 (1999) hep-th/9812013
[22]Carlip, S.: Class. Quant. Grav. 16, 3327 (1999) gr-qc/9906126
[23]Cvitan, M., Pallua, S., Prester, P.: Phys. Rev. D 70, 084043 (2004) hep-th/0406186
[24]Dreyer, O., Ghosh, A., Wisniewski, J.: Class. Quant. Grav. 18, 1929 (2001) hep-th/0101117
[25]Koga, J.: Phys. Rev. D 64, 124012 (2001) gr-qc/0107096
[26]Carlip, S.: Class. Quant. Grav. 22, 1303 (2005) hep-th/0408123
[27]Carlip, S.: gr-qc/0702107
[28]Bergmann P.G., Komar A.B. (1960). Phys. Rev. Lett. 4: 432 · doi:10.1103/PhysRevLett.4.432
[29]Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, Heidelberg (1997)
[30]Kaloper, N., Terning, J.: personal communication
[31]Carlip, S.: Class. Quant. Grav. 22, 3055 (2005) gr-qc/0501033
[32]Aros, R., Romo, M., Zamorano, N.: hep-th/0612028
[33]Emparan, R., Sachs, I.: Phys. Rev. Lett. 81, 2408 (1998) hep-th/9806122