zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pareto-optimal solutions in fuzzy multi-objective linear programming. (English) Zbl 1181.90303

Summary: The problem of solving multi-objective linear-programming problems, by assuming that the decision maker has fuzzy goals for each of the objective functions, is addressed. Several methods have been proposed in the literature in order to obtain fuzzy-efficient solutions to fuzzy multi-objective programming problems.

In this paper, we show that, in the case that one of our goals is fully achieved, a fuzzy-efficient solution may not be Pareto-optimal, and, therefore, we propose a general procedure to obtain a non-dominated solution, which is also fuzzy-efficient. Two numerical examples illustrate our procedure.

MSC:
90C70Fuzzy programming
90C29Multi-objective programming; goal programming
References:
[1]Bellman, R. E.; Zadeh, L. A.: Decision making in a fuzzy environment, Management science 17, 141-164 (1970) · Zbl 0224.90032
[2]Dubois, D.; Fortemps, P.: Computing improved optimal solutions to MAX – MIN flexible constraint satisfaction problems, European journal of operational research 118, 95-126 (1999) · Zbl 0945.90087 · doi:10.1016/S0377-2217(98)00307-5
[3]Guu, S. -M.; Wu, Y. -K.: Weighted coefficients in two-phase approach for solving the multiple objective programming problems, Fuzzy sets and systems 85, 45-48 (1997) · Zbl 0907.90231 · doi:10.1016/0165-0114(95)00360-6
[4]Guu, S. -M.; Wu, Y. -K.: Two phase approach for solving the fuzzy linear programming problems, Fuzzy sets and systems 107, 191-195 (1999) · Zbl 0949.90098 · doi:10.1016/S0165-0114(97)00304-7
[5]Inuiguchi, M.; Ichihashi, H.; Kume, Y.: A solution algorithm for fuzzy linear programming with piecewise linear membership functions, Fuzzy sets and systems 34, 15-31 (1990) · Zbl 0693.90064 · doi:10.1016/0165-0114(90)90123-N
[6]Jiménez, M.; Arenas, M.; Bilbao, A.; Uría, M. V. Rodríguez: Approximate resolution of an imprecise goal programming model with nonlinear membership functions, Fuzzy sets and systems 150, 129-145 (2005) · Zbl 1075.90082 · doi:10.1016/j.fss.2004.05.001
[7]Masud, A. S.; Hwang, C. L.: Interactive sequential goal programming, Journal of the operational research society 32, 391-400 (1980) · Zbl 0452.90069 · doi:10.2307/2581556
[8]Romero, C.: Handbook of critical issues in goal programming, (1991) · Zbl 0817.68034
[9]Sakawa, M.; Yano, H.: Interactive decision making for multiple non linear programming using augmented minimax problems, Fuzzy sets and systems 20, No. 1, 31-43 (1986) · Zbl 0629.90054 · doi:10.1016/S0165-0114(86)80029-X
[10]Sakawa, M.; Yano, H.; Yumine, T.: An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application, IEEE transactions on systems, man and cybernetics 17, 654-661 (1987)
[11]Werners, B.: Interactive multiple objective programming subject to flexible constraints, European journal of operational research 31, 342-349 (1987) · Zbl 0636.90085 · doi:10.1016/0377-2217(87)90043-9
[12]Werners, B.: An interactive fuzzy programming system, Fuzzy sets and systems 23, 131-147 (1987) · Zbl 0634.90076 · doi:10.1016/0165-0114(87)90105-9
[13]Zimmermann, H. J.: Fuzzy programming and linear programming with several objective functions, Fuzzy sets and systems 1, No. 1, 45-55 (1978) · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3