zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive synchronization of uncertain dynamical networks with delayed coupling. (English) Zbl 1182.92007
Summary: We propose a simple scheme for the synchronization of an uncertain complex dynamical network with delayed coupling. Based on the Lyapunov stability theory of functional differential equations, certain controllers can be designed for ensuring the states of uncertain dynamical network with coupling delays to globally asymptotically synchronize by combining the adaptive method and linear feedback with the updated feedback strength. Different update gains ηi will lead to different rates toward synchrony, the choice of which depends on the concrete systems and network models. This strategy can be applied to any complex dynamical network (regular, small-world, scale-free or random). Numerical examples with respectively nearest-neighbor coupling and scale-free structure are given to demonstrate the effectiveness of our presented scheme.
MSC:
92B20General theory of neural networks (mathematical biology)
34K20Stability theory of functional-differential equations
34K60Qualitative investigation and simulation of models
References:
[1]Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998) · doi:10.1038/30918
[2]Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[3]Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001) · doi:10.1038/35065725
[4]Lu, J.Q., He, J., Cao, J.D., Gao, Z.Q.: Topology influences performance in the associative memory neural networks. Phys. Lett. A 354(5–6), 335–343 (2006) · doi:10.1016/j.physleta.2006.01.085
[5]Liu, Y., Takiguchi, Y., Davis, P., Aida, T., Saito, S., Liu, J.M.: Injection locking and synchronization of chaos in semiconductor lasers. Appl. Phys. Lett. 80, 4306–4308 (2002) · doi:10.1063/1.1485127
[6]Kim, K.T., Kim, M.S., Chong, Y., Niemeyer, J.: Simulations of collective synchronization in Josephson junction arrays. Appl. Phys. Lett. 88, 062501 (2006) · doi:10.1063/1.2171796
[7]Lu, J.Q., Cao, J.D.: Adaptive synchronization in tree-like dynamical networks. Nonlinear Anal. Real World Appl. 8(4), 1252–1260 (2007) · Zbl 1125.34031 · doi:10.1016/j.nonrwa.2006.07.010
[8]Lu, J.Q., Ho, D.W.C.: Local and global synchronization in general complex dynamical networks with delay coupling. Chaos Solitons Fractals (2006). doi: 10.1016/j.chaos.2006.10.030
[9]Baek, S.J., Ott, E.: Onset of synchronization in systems of globally coupled chaotic maps. Phys. Rev. E 69(6), 66210 (2004) · doi:10.1103/PhysRevE.69.066210
[10]Donetti, L., Hurtado, P.I., Munoz, M.A.: Entangled networks, synchronization, and optimal network topology. Phys. Rev. Lett. 95, 188701 (2005) · doi:10.1103/PhysRevLett.95.188701
[11]Belykh, I., de Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 188101 (2005) · doi:10.1103/PhysRevLett.94.188101
[12]Zhou, J., Lu, J., Lü, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 51(4), 652–656 (2006) · doi:10.1109/TAC.2006.872760
[13]Wang, W., Cao, J.: Synchronization in an array of linearly coupled networks with time-varying delay. Physica A: Stat. Mech. Appl. 366, 197–211 (2006) · doi:10.1016/j.physa.2005.10.047
[14]Wang, X.F.: Complex networks: topology, dynamics and synchronization. Int. J. Bifurc. Chaos 12(5), 885–916 (2002) · Zbl 1044.37561 · doi:10.1142/S0218127402004802
[15]Lu, J.Q., Ho, D.W.C., Liu, M.: Globally exponential synchronization in an array of asymmetric coupled neural networks. Phys. Lett. A 369, 444–451 (2007) · Zbl 1209.37108 · doi:10.1016/j.physleta.2007.05.036
[16]Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: Synchronization: a universal concept in nonlinear science. Am. J. Phys. 70, 655 (2002) · doi:10.1119/1.1475332
[17]Li, C., Chen, L., Aihara, K.: Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3, 37–44 (2006) · doi:10.1088/1478-3975/3/1/004
[18]Li, C., Chen, L., Aihara, K.: Stochastic synchronization of genetic oscillator networks. BMC Syst. Biol. 1, 6 (2007) · doi:10.1186/1752-0509-1-6
[19]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[20]Li, C., Chen, G.: Synchronization in general complex dynamical networks with coupling delays. Physica A: Stat. Mech. Appl. 343, 263–278 (2004) · doi:10.1016/j.physa.2004.05.058
[21]Cao, J.D., Lu, J.Q.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos 16(1), 013133 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[22]Jiang, Y.: Globally coupled maps with time delay interactions. Phys. Lett. A 267(5–6), 342–349 (2000) · doi:10.1016/S0375-9601(00)00135-3
[23]Masoller, C., Martı, A.C., Zanette, D.H.: Synchronization in an array of globally coupled maps with delayed interactions. Physica A: Stat. Mech. Appl. 325(1–2), 186–191 (2003) · Zbl 1026.37023 · doi:10.1016/S0378-4371(03)00197-3
[24]Choi, M.Y., Kim, H.J., Kim, D., Hong, H.: Synchronization in a system of globally coupled oscillators with time delay. Phys. Rev. E 61(1), 371–381 (2000) · doi:10.1103/PhysRevE.61.371
[25]Heil, T., Fischer, I., Elsässer, W., Mulet, J., Mirasso, C.R.: Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86(5), 795–798 (2001) · doi:10.1103/PhysRevLett.86.795
[26]Earl, M.G., Strogatz, S.H.: Synchronization in oscillator networks with delayed coupling: a stability criterion. Phys. Rev. E 67(3), 36204 (2003) · doi:10.1103/PhysRevE.67.036204
[27]Atay, F.M., Jost, J., Wende, A.: Delays, connection topology, and synchronization of coupled chaotic maps. Phys. Rev. Lett. 92(14), 144101 (2004) · doi:10.1103/PhysRevLett.92.144101
[28]Wünsche, H.J., Bauer, S., Kreissl, J., Ushakov, O., Korneyev, N., Henneberger, F., Wille, E., Erzgräber, H., Peil, M., Elsäßer, W., et al.: Synchronization of delay-coupled oscillators: a study of semiconductor lasers. Phys. Rev. Lett. 94(16), 163901 (2005) · doi:10.1103/PhysRevLett.94.163901
[29]Cao, J., Li, P., Wang, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling. Phys. Lett. A 353(4), 318–325 (2006) · doi:10.1016/j.physleta.2005.12.092
[30]Chen, M., Zhou, D.: Synchronization in uncertain complex networks. Chaos 16(1), 013101 (2006) · Zbl 1144.37338 · doi:10.1063/1.2126581
[31]Li, Z., Chen, G.: Robust adaptive synchronization of uncertain dynamical networks. Phys. Lett. A 324(2-3), 166–178 (2004) · Zbl 1123.93316 · doi:10.1016/j.physleta.2004.02.058
[32]Hale, J.K.: Diffusive coupling, dissipation, and synchronization. J. Dyn. Differ. Equ. 9(1), 1–52 (1997) · Zbl 1091.34532 · doi:10.1007/BF02219051
[33]Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002)
[34]Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963) · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[35]Leonov, G., Bunin, A., Koksch, N.: Attractor localization of the Lorenz system. Z. Angew. Math. Mech. 67(2), 649–656 (1987) · Zbl 0653.34040 · doi:10.1002/zamm.19870671215