zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sampled-data based average consensus with measurement noises: convergence analysis and uncertainty principle. (English) Zbl 1182.93083
Summary: In this paper, sampled-data based average-consensus control is considered for networks consisting of continuous-time first-order integrator agents in a noisy distributed communication environment. The impact of the sampling size and the number of network nodes on the system performances is analyzed. The control input of each agent can only use information measured at the sampling instants from its neighborhood rather than the complete continuous process, and the measurements of its neighbors’ states are corrupted by random noises. By probability limit theory and the property of graph Laplacian matrix, it is shown that for a connected network, the static mean square error between the individual state and the average of the initial states of all agents can be made arbitrarily small, provided the sampling size is sufficiently small. Furthermore, by properly choosing the consensus gains, almost sure consensus can be achieved. It is worth pointing out that an uncertainty principle of Gaussian networks is obtained, which implies that in the case of white Gaussian noises, no matter what the sampling size is, the product of the steady-state and transient performance indices is always equal to or larger than a constant depending on the noise intensity, network topology and the number of network nodes.
MSC:
93C57Sampled-data control systems
93E03General theory of stochastic systems
93A14Decentralized systems
References:
[1]Gazi V, Passino K M. Stability analysis of swarms. IEEE Trans Autom Control, 2003, 48(4): 692–696 · doi:10.1109/TAC.2003.809765
[2]Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control, 2006, 51(3): 401–420 · doi:10.1109/TAC.2005.864190
[3]Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control, 2004, 49(9): 1465–1476 · doi:10.1109/TAC.2004.834433
[4]Lynch N. Distributed Algorithms. San Matero, CA: Morgan Kaufmann, 1996
[5]Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005. 8179–8184
[6]Olfati-Saber R, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005. 6698–6703
[7]Vicsek T, Czirok A, Jacob E B, et al. Novel type of phase transitions in a system of self-driven particles. Phys Rev Lett, 1995, 75(6): 1226–1229 · doi:10.1103/PhysRevLett.75.1226
[8]Conradt L, Roper T J. Consensus decision making in animals. Trends Ecol Evol, 2005, 20(8): 449–456 · doi:10.1016/j.tree.2005.05.008
[9]Hoogendoorn S P. Pedestrian flow modeling by adaptive control. Transport Res Rec, 2004, 1878: 95–103 · doi:10.3141/1878-12
[10]Barahona M, Pecora L M. Synchronization in small-world systems. Phys Rev Lett, 2002, 89(5): 054101 · doi:10.1103/PhysRevLett.89.054101
[11]Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control, 2003, 48(6): 988–1001 · doi:10.1109/TAC.2003.812781
[12]Liu Z, Guo L, Connectivity and synchronization of Vicsek model. Sci China Ser F-Inf Sci, 2008, 51(7): 848–858 · doi:10.1007/s11432-008-0077-2
[13]Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Autom Control, 2005, 50(5): 655–661 · doi:10.1109/TAC.2005.846556
[14]Wang L, Guo L. Robust consensus and soft control of multiagent systems with noises. J Syst Sci Complex, 2008, 21(3): 406–415 · Zbl 1173.93309 · doi:10.1007/s11424-008-9122-x
[15]Olfati-Saber R, Murray R M. Consensus problem in networks of agents with switching topology and time-delays. IEEE Trans Autom Control, 2004, 49(9): 1520–1533 · doi:10.1109/TAC.2004.834113
[16]Kingston D B, Beard R W. Discrete-time average-consensus under switching network topologies. In: Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006. 3551–3556
[17]Xie G M, Wang L. Consensus control for a class of networks of dynamic agents: fixed topology. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005. 96–101
[18]Xie G M, Wang L. Consensus control for a class of networks of dynamic agents: switching topology. In: Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, 006. 1382–1387
[19]Wang J H, Cheng D Z, Hu X M. Consensus of multi-agent linear dynamic systems. Asian J Control, 2007, 10(2): 144–155 · doi:10.1002/asjc.15
[20]Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42(7): 1177–1182 · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[21]Moreau L. Stability of multiagent systems with time-dependent commmunication links. IEEE Trans Autom Control, 2005, 50(2): 169–182 · doi:10.1109/TAC.2004.841888
[22]Bauso D, Giarré L, Pesenti R. Non-linear protocols for optimal distributed consensus in networks of dynamics agents. Sys Control Lett, 2006, 55(11): 918–928 · Zbl 1111.68009 · doi:10.1016/j.sysconle.2006.06.005
[23]Cao M, Morse A S, Anderson B D O. Reaching a consensus in a dynamically changing environment-convergence rates, measurement delays and asynchronous events. SIAM J Control Optim, 2006, 47(2): 601–623 · Zbl 1157.93434 · doi:10.1137/060657029
[24]Hatano Y, Mesbahi M. Agreement over random network. IEEE Trans Autom Control, 2005, 50(11): 1867–1872 · doi:10.1109/TAC.2005.858670
[25]Wu C W. Synchronization and convergence of linear dynamics in random directed networks. IEEE Trans Autom Control, 2006, 51(7): 1207–1210 · doi:10.1109/TAC.2006.878783
[26]Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE, 2007, 95(1): 215–233 · doi:10.1109/JPROC.2006.887293
[27]Ren W, Beard R W, Atkins E M. A survey of consensus problems in multi-agent coordination. In: Proceedings of the 2005 American Control Conference, Portland, OR, USA, 2005. 1859–1864
[28]Kingston D B, Ren W, Beard R W. Consensus algorithm are input-to-state stable. In: Proceedings of the 2005 American Control Conferences, Portland, OR, USA, 2005. 1686–1690
[29]Ren W, Beard R W, Kingston D B. Multi-agent Kalman consensus with relative uncertainty. In: Proceedings of the 2005 American Control Conferences, Portland, OR, USA, 2005. 1865–1870
[30]Huang M, Manton J H. Coordination and consensus of networked agents with noisy measurement: stochastic algorithms and asymptotic behavior. SIAM J Control Optim, 2009, 48(1): 134–161 · Zbl 1182.93108 · doi:10.1137/06067359X
[31]Li T, Zhang J F. Mean square average consensus under measurement noises and fixed topologies: necessary and sufficient conditions. Automatica, 2009, 45(8): 1929–1936 · Zbl 1185.93006 · doi:10.1016/j.automatica.2009.04.017
[32]Yao L L, Zhang J F. Sampled-data-based LQ control of stochastic linear continuous-time systems. Sci China Ser FInf Sci, 2002, 45(5): 383–396 · Zbl 1185.93078 · doi:10.1007/BF02714095
[33]Åström K J, Wittenmark B. Computer-Controlled Systems: Thoery and Design, 3rd Ed. Englewood Cliffs, NJ: Prentice Hall, 1997
[34]Godsil C, Royle G. Algebraic Graph Theory. New York: Springer-Verlag, 2001
[35]Xiao L, Boyd S. Fast linear iterations for distributed averaging. Syst Control Lett, 2004, 53(1): 65–78 · Zbl 1157.90347 · doi:10.1016/j.sysconle.2004.02.022
[36]Bruckstein A M, Cohen N, Efrat A. Ants, crickets and frogs in cyclic pursuit. In: Center for intelligent systems Technical Report 9105, Technion-Israel Institute of Technology, Haifa, Israel, 1991
[37]Wolfowitz J. Products of indecomposable, aperiodic, stochastic matrices. Proc Amer Math Soc, 1963, 14: 733–736 · doi:10.1090/S0002-9939-1963-0154756-3
[38]Teicher H. Almost certain convergence in double arrays. Z Wahrsch Verw Gebiete, 1985, 69(3): 331–345 · Zbl 0548.60028 · doi:10.1007/BF00532738
[39]Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales, 3rd ed. New York: Springer-Verlag, 1997