zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fuzzy complete lattices. (English) Zbl 1183.06004
The authors present an approach to fuzzification of complete lattices, which is a special kind of complete Ω-lattices defined by Lai and Zhang. Tarski fixed-point theorem for the L-fuzzy complete lattices was proved in a different way. Some fuzzy powerset operators are suggested.
MSC:
06B23Complete lattices, completions
06D72Fuzzy lattices etc.
18B35Preorders, orders and lattices (viewed as categories)
References:
[1]Abramsky, S.; Jung, A.: Domain theory, Handbook of logic in computer science 3, 1-168 (1995)
[2]Abramsky, S.; Vickers, S.: Quantales, observational logic and process semantics, Mathematical structures in computer science 3, 161-227 (1993) · Zbl 0823.06011 · doi:10.1017/S0960129500000189
[3]Bělohlávek, R.: Fuzzy relational systems, foundations and principles, (2002)
[4]Bělohlávek, R.: Concept lattices and order in fuzzy logic, Annals of pure and applied logic 128, 277-298 (2004) · Zbl 1060.03040 · doi:10.1016/j.apal.2003.01.001
[5]Bělohlávek, R.: Lattice-type fuzzy order is uniquely given by its 1-cut: proof and consequences, Fuzzy sets and systems 123, 447-458 (2004) · Zbl 1044.06002 · doi:10.1016/S0165-0114(03)00239-2
[6]Bonsangue, M. M.; Van Breugel, F.; Rutten, J. J. M.M.: Generalized ultrametric spaces: completion, topology and powerdomains via the yoneda embedding, Theoretical computer science 193, 1-51 (1998) · Zbl 0997.54042 · doi:10.1016/S0304-3975(97)00042-X
[7]Davey, B. A.; Priestley, H. A.: Introduction to lattices and order, (1990)
[8]Eilenberg, S.; Kelly, G. M.: Closed categories, (1966) · Zbl 0192.10604
[9]L. Fan, A new approach to quantitative domain theory, Electronic Notes in Theoretic Computer Science 45 (2001) nbsp;http://www.elsevier.nl/locate/entcsnbsp;.
[10]Flagg, R. C.: Quantale and continuity spaces, Algebra universalis 37, 257-276 (1997) · Zbl 0906.54024 · doi:10.1007/s000120050018
[11]B. Flagg, P. Sünderhauf, K. Wagner, A logical approach to quantitative domain theory, preprint, 1996, submitted for publication.
[12]Flagg, B.; Kopperman, R.: Continuity spaces: reconciling domains and metric spaces, Theoretical computer science 177, 111-138 (1997) · Zbl 0901.68109 · doi:10.1016/S0304-3975(97)00236-3
[13]Fuentes-González, R.: Down and up operators associated to fuzzy relations and t-norms: a definition of fuzzy semi-ideals, Fuzzy sets and systems 117, 377-389 (2001) · Zbl 0965.03065 · doi:10.1016/S0165-0114(98)00369-8
[14]Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; Scott, D. S.: A compendium of continuous lattices, (1980)
[15]Goguen, J. A.: L-fuzzy sets, Journal of mathematical analysis and applications 18, 145-174 (1967) · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[16]Hájek, P.: Metamathematics of fuzzy logic, (1998)
[17]Höhle, U.: On the fundamentals of fuzzy set theory, Journal of mathematical analysis and applications 201, 786-826 (1996)
[18]U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids, in: S.E. Rodabaugh, E.P. Klement, U. Höhle (Eds.), Applications of Category Theory to Fuzzy Subsets, Theory and Decision Library: Series B: Mathematical and Statistical Methods, Vol. 14, Kluwer Academic Publishers, Boston, Dordrecht, London, 1992, pp. 33 – 72 (Chapter 2).
[19]U. Höhle, Categorical axioms of neighborhood systems, in: W. Kotzé (Ed.), Quaestiones Mathematicae 20 (1997) 373 – 414 (Special Issue).
[20]Höhle, U.; Blanchard, N.: Partial ordering in L-underdeterminate sets, Information sciences 35, 133-144 (1985) · Zbl 0576.06004 · doi:10.1016/0020-0255(85)90045-3
[21]U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999. · Zbl 0942.00008
[22]W. Kotzé (Ed.), Quaestiones Mathematicae 20 (1997) (Special Issue).
[23]Lai, H. L.; Zhang, D. X.: Fuzzy preorder and fuzzy topology, Fuzzy sets and systems 157, 1865-1885 (2006) · Zbl 1118.54008 · doi:10.1016/j.fss.2006.02.013
[24]H.L. Lai, D.X. Zhang, Many-valued complete distributivity, arXiv:math.CT/0603590, 2006.
[25]Johnstone, P. T.: Stone spaces, (1982)
[26]Kelly, G. M.: Basic concepts of enriched category theory, London mathematical soceity lecture notes series, Basic concepts of enriched category theory, London mathematical soceity lecture notes series 64 (1982) · Zbl 0478.18005
[27]Lawvere, F. W.: Metric spaces generalized logic, and closed categories, Rendiconti del seminario matematico e fisicodi milano 43, 135-166 (1973) · Zbl 0335.18006 · doi:10.1007/BF02924844
[28]Lane, S. Mac: Categories for the working mathematician, (2003)
[29]Manes, E. G.: Algebraic theories, (1976)
[30]Rodabaugh, S. E.: Point-set lattice-theoretic topology, Fuzzy sets and systems 40, 297-345 (1991) · Zbl 0733.54003 · doi:10.1016/0165-0114(91)90164-L
[31]S.E. Rodabaugh, Powerset operator based foundation for point-set lattice-theoretic (poslat) fuzzy set theories and topologies, in: W. Kotzé (Ed.), Quaestiones Mathematicae 20(Suppl.), (1997) 463 – 530. · Zbl 0911.04003 · doi:10.1080/16073606.1997.9632018
[32]S.E. Rodabaugh, Powerset operator foundations for poslat fuzzy set theories and topologies, in: U. Höhle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999, pp. 91 – 116 (Chapter 2). · Zbl 0974.03047
[33]S.E. Rodabaugh, E.P. Klement, U. Höhle (Eds.), Applications of Category Theory to Fuzzy Subsets, Theory and Decision Library: Series B: Mathematical and Statistical Methods, Vol. 14, 1992, Kluwer Academic Publishers, Boston, Dordrecht, London.
[34]S.E. Rodabaugh, E.P. Klement (Eds.), Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, Vol. 20, 2003, Kluwer Academic Publishers, Boston, Dordrecht, London. · Zbl 1020.00006
[35]Rutten, J. J. M.M.: Elements of generalized ultrametric domain theory, Theoretical computer science 170, 349-381 (1996) · Zbl 0874.68189
[36]J.J.M.M. Rutten, Weighted colimits and formal balls in generalized metric spaces, CWI, SEN-R9711, 1997.
[37]Šešelja, B.; Tepavčević, A.: Fuzzifying closure systems and fuzzy lattices, Proc. 11th internat. Conf. on rough sets, fuzzy sets, data mining and granular computing (RSFDGrC 2007), lecture notes in computer science/lecture notes in artificial intelligence 4482, 111-118 (2007)
[38]Šešelja, B.; Tepavčević, A.: Fuzzy ordering relation and fuzzy poset, Proc. second internat. Conf. on pattern recognition and machine intelligence (PReMI 2007), lecture notes in computer science 4815, 209-216 (2007)
[39]L.N. Stout, Fully fuzzy topology, in: S.E. Rodabaugh, E.P. Klement (Eds.), Topological and Algebraic Structures in Fuzzy Sets: A Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic, Vol. 20, 2003, Kluwer Academic Publishers, Boston, Dordrecht, London, pp. 235 – 253 (Chapter 8).
[40]Tepavčević, A.; Trajkovski, G.: L-fuzzy lattices: an introduction, Fuzzy sets and systems 123, 209-216 (2001) · Zbl 1009.06007 · doi:10.1016/S0165-0114(00)00065-8
[41]K.R. Wagner, Solving recursive domain equations with enriched categories, Ph.D. Thesis, Carnegie Mellon University, Technical Report CMU-CS-94-159, July 1994.
[42]Wagner, K. R.: Liminf convergence in Ω-categories, Theoretical computer science 184, 61-104 (1997) · Zbl 0935.18008 · doi:10.1016/S0304-3975(96)00223-X
[43]Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[44]Zadeh, L. A.: Similarity relations and fuzzy orderings, Information sciences 3, 159-176 (1971) · Zbl 0218.02058 · doi:10.1016/S0020-0255(71)80005-1
[45]Zhang, Q. Y.; Fan, L.: Continuity in quantitative domains, Fuzzy sets and systems 154, 118-131 (2005) · Zbl 1080.06007 · doi:10.1016/j.fss.2005.01.007
[46]Q.Y. Zhang, L. Fan, A kind of L-fuzzy complete lattices and adjoint functor theorem for LF-Posets, Report on the Fourth International Symposium on Domain Theory, Hunan University, Changsha, China, June 2006.
[47]W.X. Xie, Q.Y. Zhang, L. Fan, The Dedekind – MacNeille completions for fuzzy posets, Fuzzy Sets and Systems, in press, doi:10.1016/j.fss.2008.12.002.
[48]Q.Y. Zhang, L. Fan, W.X. Xie, Adjoint functor theorem for L-fuzzy posets, Bulletin of the Allahabad Mathematical Society, submitted for publication.