zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Painlevé analysis, Lie symmetries, and exact solutions for the time-dependent coefficients gardner equations. (English) Zbl 1183.35236
Summary: In this paper, the three variable-coefficient Gardner (vc-Gardner) equations are considered. By using the Painlevé analysis and Lie group analysis method, the Painlevé properties and symmetries for the equations are obtained. Then the exact solutions generated from the symmetries and Painlevé analysis are presented.
35Q51Soliton-like equations
76B25Solitary waves (inviscid fluids)
[1]Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[2]Li, Y.S.: Soliton and integrable systems. In: Advanced Series in Nonlinear Science. Shanghai Scientific and Technological Education Publishing House, Shanghai (1999) (in Chinese)
[3]Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Tota lattice. Suppl. Prog. Theor. Phys. 59, 64–100 (1976) · doi:10.1143/PTPS.59.64
[4]Liu, H., Li, J., Chen, F.: Exact periodic wave solutions for the hKdV equation. Nonlinear Anal. 70, 2376–2381 (2009) · Zbl 1162.35312 · doi:10.1016/j.na.2008.03.019
[5]Olver, P.J.: Applications of Lie groups to differential equations. In: Grauate Texts in Mathematics, vol. 107. Springer, New York (1993)
[6]Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer/World Publishing Corp., Berlin (1989)
[7]Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2002)
[8]Sinkala, W., Leach, P.G.L., O’Hara, J.G.: Invariance properties of a general-pricing equation. J. Differ. Equ. 244, 2820–2835 (2008) · Zbl 1147.91017 · doi:10.1016/j.jde.2008.02.044
[9]Liu, H., Li, J., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J. Comput. Appl. Math. 228, 1–9 (2009) · Zbl 1166.35033 · doi:10.1016/j.cam.2008.06.009
[10]Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the short pulse equation. Nonlinear Anal. 71, 2126–2133 (2009) · Zbl 1244.35003 · doi:10.1016/j.na.2009.01.075
[11]Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the extended mKdV equation. Acta Appl. Math. (2008). doi: 10.1007/s10440-008-9362-8
[12]Liu, H., Li, J.: Lie symmetries, conservation laws and exact solutions for two rod equations. Acta Appl. Math. (2009). doi: 10.1007/s10440-009-9462-0
[13]Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30(10), 2201–2213 (1989) · Zbl 0698.35137 · doi:10.1063/1.528613
[14]Clarkson, P.: New similarity reductions for the modified Boussinesq equation. J. Phys. A: Gen. 22, 2355–2367 (1989) · Zbl 0704.35116 · doi:10.1088/0305-4470/22/13/029
[15]Nirmala, N., Vedan, M.J., Baby, B.V.: A variable coefficient Korteweg-de Vires equation: Similarity analysis and exact solution. II. J. Math. Phys. 27(11), 2644–2646 (1986) · Zbl 0632.35062 · doi:10.1063/1.527283
[16]Li, J., Xu, T., Meng, X.-H., Zhang, Y.-X., Zhang, H.-Q., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443–1455 (2007) · Zbl 1128.35378 · doi:10.1016/j.jmaa.2007.03.064
[17]Zhang, Y., Li, J., Lv, Y.-N.: The exact solution and integrable properties to the variable-coefficient modified Korteweg-de Vires equation. Ann. Phys. 323, 3059–3064 (2008) · Zbl 1161.35046 · doi:10.1016/j.aop.2008.04.012
[18]Wiss, J.: The Painlevé property for partial differential equations, II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405–1413 (1983) · Zbl 0531.35069 · doi:10.1063/1.525875
[19]Ramani, A., Grammaticos, B.: The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 180, 159–245 (1989) · doi:10.1016/0370-1573(89)90024-0