zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Notes on a class of one-dimensional Landau-Brazovsky models. (English) Zbl 1183.49021
Summary: In the paper, a class of one-dimensional Landau-Brazovsky models is investigated. We present a sufficient condition under which the corresponding functional achieves its minimum. Moreover, a nonexistence result for nontrivial critical points is given.
49K15Optimal control problems with ODE (optimality conditions)
49J15Optimal control problems with ODE (existence)
[1]Leizarowitz A., Mizel V.J.: One dimensional infinite-horizon variational problems arising in continuum mechanics. Arch. Rational. Mech. Anal. 106, 161–194 (1989) · Zbl 0672.73010 · doi:10.1007/BF00251430
[2]Matsen M.W.: The standard Gaussian model for block copolymer melts. J. Phys. Condens. Matter 14, 21–47 (2002) · doi:10.1088/0953-8984/14/2/201
[3]Mizel V.J., Peletier L.A., Troy W.C.: Periodic Phases in Second-Order Materials. Arch. Rational. Mech. Anal. 145, 343–382 (1998) · Zbl 0931.74006 · doi:10.1007/s002050050133
[4]Myint-U T.: Ordinary Differential Equations. North-Holland, New York (1978)
[5]Peletier L.A., Troy W.C., Spatial Patterns: higher order models in physics and mechanics, Progress in nonlinear differential equations and their applications 45, Birkhäuser Boston, 2001.
[6]Zaslavski A.J.: The Existence of Periodic Minimal Energy Configurations for One-Dimensional Infinite Horizon Variational Problems Arising in Continuum Mechanics. J. Math. Anal. Appl. 194, 459–476 (1995) · Zbl 0869.49003 · doi:10.1006/jmaa.1995.1311
[7]Zhang P.W., Zhang X.W.: An effient numerical method of Landau–Brazovskii model. J. Comp. Phys. 227, 5859–5870 (2008) · Zbl 1151.82447 · doi:10.1016/j.jcp.2008.02.021