zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The spectral curve of a quaternionic holomorphic line bundle over a 2-torus. (English) Zbl 1183.58026

Let W be a right quaternionic vector bundle over a 2-torus T which has a holomorphic structure D. Let Spec(W,D) be the associated spectrum of complex monodromies occuring for non-trivial holomorphic sections over the pull-back bundle on the universal cover. This is a 1-dimensional complex analytic set. The associated spectral curve S is the Riemann surface which normalizes Spec(W,D).

The authors provide a detailed desciption of the geometry and asymptotic behavior of S. If S has finite genus, the Dirichlet energy of a map from T 2 to S 2 or the Willmore energy of an immersion of T 2 into S 4 are presented in terms of the geometry of S. Similarly, the kernel bundle of a Dirac type bundle can be related to the Jacobian of S.

MSC:
58J50Spectral problems; spectral geometry; scattering theory
37K25Relations of infinite-dimensional systems with differential geometry
32G13Analytic moduli problems
References:
[1]Bobenko A.: All constant mean curvature tori in R 3, S 3, H 3 in terms of theta functions. Math. Ann. 290, 209–245 (1991) · Zbl 0711.53007 · doi:10.1007/BF01459243
[2]Bohle, C.: Constrained Willmore tori in the 4-sphere. http://arxiv.org/abs/0803.0633
[3]Bohle, C., Leschke, K., Pedit, F., Pinkall, U.: Conformal maps from a 2-torus to the 4-sphere. http://arxiv.org/abs/0712.2311
[4]Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal geometry of surfaces in S 4 and quaternions. Lecture Notes in Mathematics, vol. 1772. Springer, Berlin (2002)
[5]Burstall, F., Pedit, F., Pinkall, U.: Schwarzian derivatives and flows of surfaces. In: Guest, M.A., Miyaoka, R., Ohnita, Y. (eds.) Differential Geometry and Integrable Systems. Contemp. Math., vol. 308, pp. 39–61 (2002)
[6]Dubrovin B.A., Krichever I.M., Novikov S.P.: The Schrödinger equation in a periodic field and Riemann surfaces. Soviet Math. Dokl. 17, 947–952 (1976)
[7]Feldmann, J., Knörrer, H., Trubowitz, E.: Infinite Genus Riemann Surfaces. AMS (2003)
[8]Ferus D., Leschke K., Pedit F., Pinkall U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. 146(3), 507–559 (2001) · Zbl 1038.53046 · doi:10.1007/s002220100173
[9]Grinevich P.G., Schmidt M.U.: Conformal invariant functionals of immersions of tori into R 3. J. Geom. Phys. 26, 51–78 (1998) · Zbl 0949.53007 · doi:10.1016/S0393-0440(97)00038-7
[10]Hitchin N.: Harmonic maps from a 2-torus to the 3-sphere. J. Differ. Geom. 31(3), 627–710 (1990)
[11]Konopelchenko B.G.: Induced surfaces and their integrable dynamics. Stud. Appl. Math. 96, 9–51 (1996)
[12]Konopelchenko B.G.: Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy. Ann. Glob. Anal. Geom. 18, 61–74 (2000) · Zbl 0946.53002 · doi:10.1023/A:1006608908156
[13]Krichever I.: Spectral theory of two-dimensional periodic operators and its applications. Russian Math. Surv. 44, 145–225 (1989) · Zbl 0699.35188 · doi:10.1070/RM1989v044n02ABEH002044
[14]Kuchment P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993)
[15]McIntosh, I.: The quaternionic KP hierarchy and conformally immersed 2-tori in the 4-sphere. http://arxiv.org/abs/0902.3598
[16]Novikov S.P.: Two-dimensional Schrödinger operators in periodic fields. J. Soviet Math. 28, 1–20 (1985) · Zbl 0564.35083 · doi:10.1007/BF02104894
[17]Pedit, F., Pinkall, U.: Quaternionic analysis on Riemann surfaces and differential geometry. Doc. Math. J. DMV, Extra Volume ICM Berlin, vol. II, pp. 389–400 (1998)
[18]Pinkall U., Sterling I.: On the classification of constant mean curvature tori. Ann. Math. 130, 407–451 (1989) · Zbl 0683.53053 · doi:10.2307/1971425
[19]Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. IV. Analysis of Operators. Academic Press, New York (1978)
[20]Schmidt, M.U.: A proof of the Willmore conjecture. http://arxiv.org/abs/math/0203224
[21]Taimanov I.A.: Modified Novikov–Veselov equation and differential geometry of surfaces. Am. Math. Soc. Transl. 179, 133–151 (1997)
[22]Taimanov I.A.: The Weierstrass representation of closed surfaces in 3 . Funct. Anal. Appl. 32, 49–62 (1998) · Zbl 0979.53012 · doi:10.1007/BF02463208
[23]Taimanov I.A.: Two-dimensional Dirac operator and surface theory. Russian Math. Surv. 61, 79–159 (2006) · Zbl 1144.53302 · doi:10.1070/RM2006v061n01ABEH004299
[24]Warner F.: Foundations of differentiable manifolds and Lie groups. Scott, Foresman and Co., Glenview, Ill.-London (1971)