zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Eighth-order methods with high efficiency index for solving nonlinear equations. (English) Zbl 1183.65051
Summary: We derive a new family of eighth-order methods for solving simple roots of nonlinear equations by using weight function methods. Per iteration these methods require three evaluations of the function and one evaluation of its first derivative, which implies that the efficiency indexes are 1.682. Numerical comparisons are made to show the performance of the derived methods, as shown in the illustration examples.
MSC:
65H05Single nonlinear equations (numerical methods)
65Y20Complexity and performance of numerical algorithms
References:
[1]Ostrowski, A. M.: Solution of equations in Euclidean and Banach space, (1973)
[2]Chun, Changbum; Ham, Yoonmee: Some sixth-order variants of Ostrowski root-finding methods, Appl. math. Comput. 193, 389-394 (2007) · Zbl 1193.65055 · doi:10.1016/j.amc.2007.03.074
[3]Kou, Jisheng; Li, Yitian; Wang, Xiuhua: Some variants of ostrowskis method with seventh-order convergence, J. comput. Appl. math. 209, 153-159 (2007) · Zbl 1130.41006 · doi:10.1016/j.cam.2006.10.073
[4]Bi, Weihong; Ren, Hongmin; Wu, Qingbiao: Three-step iterative methods with eighth-order convergence for solving nonlinear equations, J. comput. Appl. math. 225, 105-112 (2009) · Zbl 1161.65039 · doi:10.1016/j.cam.2008.07.004
[5]Bi, Weihong; Wu, Qingbiao; Ren, Hongmin: A new family of eighth-order iterative methods for solving nonlinear equations, Appl. math. Comput. 214, 236-245 (2009) · Zbl 1173.65030 · doi:10.1016/j.amc.2009.03.077
[6]Özban, A. Y.: Some new variants of Newton’s method, Appl. math. Lett. 17, 677-682 (2004)
[7]Thukral, R.: Introduction to a Newton-type method for solving nonlinear equations, Appl. math. Comput. 195, 663-668 (2008) · Zbl 1154.65034 · doi:10.1016/j.amc.2007.05.013
[8]Weerakoon, S.; Fernando, T. G. I.: A variant of Newton’s method with accelerated third-order convergence, Appl. math. Lett. 13, No. 8, 87-93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2
[9]Kou, Jisheng; Li, Yitian: The improvements of Chebyshev – halley methods with fifth-order convergence, Appl. math. Comput. 188, 143-147 (2007) · Zbl 1118.65036 · doi:10.1016/j.amc.2006.09.097
[10]Ham, Yoonmee; Chun, Changbum: A fifth-order iterative method for solving nonlinear equations, Appl. math. Comput. 194, 287-290 (2007) · Zbl 1193.65061 · doi:10.1016/j.amc.2007.04.005
[11]Kou, Jisheng; Li, Yitian: Modified Chebyshev – halley methods with sixth-order convergence, Appl. math. Comput. 188, 681-685 (2007) · Zbl 1118.65037 · doi:10.1016/j.amc.2006.10.018
[12]Kou, Jisheng; Li, Yitian: An improvement of the jarratt method, Appl. math. Comput. 189, 1816-1821 (2007)
[13]Wang, Xiuhua; Kou, Jisheng; Li, Yitian: A variant of jarratt method with sixth-order convergence, Appl. math. Comput. 204, 14-19 (2008) · Zbl 1168.65346 · doi:10.1016/j.amc.2008.05.112
[14]Chun, Changbum: Some improvements of jarratt’s method with sixth-order convergence, Appl. math. Comput. 190, 1432-1437 (2007) · Zbl 1122.65329 · doi:10.1016/j.amc.2007.02.023
[15]Kou, Jisheng: Some new sixth-order methods for solving non-linear equations, Appl. math. Comput. 189, 647-651 (2007) · Zbl 1122.65333 · doi:10.1016/j.amc.2006.11.117
[16]Chun, Changbum; Neta, Beny: Some modification of Newton’s method by the method of undetermined coefficients, Comput. math. Appl. 56, 2528-2538 (2008) · Zbl 1165.65343 · doi:10.1016/j.camwa.2008.05.005
[17]Wang, Xia; Liu, Liping: Two new families of sixth-order methods for solving non-linear equations, Comput. math. Appl. 213, No. 1, 73-78 (2009) · Zbl 1170.65032 · doi:10.1016/j.amc.2009.03.007
[18]Chun, Changbum: Construction of third-order modifications of Newton’s method, Appl. math. Comput. 189, 662-668 (2007) · Zbl 1122.65325 · doi:10.1016/j.amc.2006.11.127
[19]Chun, Changbum: Some fourth-order iterative methods for solving nonlinear equations, Appl. math. Comput. 195, 454-459 (2008) · Zbl 1173.65031 · doi:10.1016/j.amc.2007.04.105
[20]Chun, Changbum; Ham, Yoonmee: Some second-derivative-free variants of super-halley method with fourth-order convergence, Appl. math. Comput. 195, 537-541 (2008) · Zbl 1132.65041 · doi:10.1016/j.amc.2007.05.003
[21]Ham, Yoonmee; Chun, Changbum; Lee, Sang-Gu: Some higher-order modifications of Newton’s method for solving nonlinear equations, J. comput. Appl. math. 222, 477-486 (2008) · Zbl 1158.65035 · doi:10.1016/j.cam.2007.11.018
[22]Gautschi, W.: Numerical analysis: an introduction, (1997)